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A tragedy of the commons (TOC) occurs when individuals acting in their own self-interest deplete
commonly held resources, leading to a worse outcome than had they cooperated. Over time, the depletion
of resources can change incentives for subsequent actions. Here, we investigate long-term feedback
between game and environment across a continuum of incentives in an individual-based framework. We
identify payoff-dependent transition rules that lead to oscillatory TOCs in stochastic simulations and the
mean field limit. Further extending the stochastic model, we find that spatially explicit interactions can lead
to emergent, localized dynamics, including the propagation of cooperative wave fronts and cluster
formation of both social context and resources. These dynamics suggest new mechanisms underlying how
TOCs arise and how they might be averted.
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Introduction.—In 1968, Garrett Hardin explored a social
dilemma, which he termed the “tragedy of the commons”
(TOC) [1]. The social dilemma arises when two individuals
choose amongst distinct strategies to utilize a limited public
good. Both individuals receive the maximal combined
benefit if they utilize the public good with restraint, i.e.,
if they “cooperate.” However, each individual receives the
maximal personal benefit if they utilize the public good
without restraint, i.e., if they “defect,” while their opponent
cooperates. As a consequence, individuals acting rationally
will cheat, leaving all worse off. Hardin argued that such a
TOC is inevitable [1].
Evolutionary dynamics arising from a TOC dilemma can

be modeled in terms of changes in the frequencies of
individuals from two populations. Individuals interact and
receive payoffs that depend on their strategy and the
strategy of their opponent [2]. In replicator dynamics
[3], the payoff represents a relative fitness which deter-
mines the growth of cooperators, with frequency x, and of
defectors, with frequency 1 − x, i.e.,

_x ¼ xð1 − xÞ½rCðx; AÞ − rDðx; AÞ�: ð1Þ

The values rC and rD denote the context-dependent fitness
payoff to cooperators and defectors, respectively, given
the payoff matrix A ¼ ½RT S

P�, where rC ¼ Rxþ Sð1 − xÞ,
rD ¼ Txþ Pð1 − xÞ, such that R denotes the reward to
cooperation, T denotes the temptation to cheat, S denotes
the sucker’s payoff, and P denotes the punishment given
mutual defection. A TOC occurs when T > R, P > S, and
P < R. However, in contrast to standard game theory
assumptions, payoffs are unlikely to remain fixed after
repeated decisions that degraded commonly held resources.

To address this issue, a recent model [4] considered
dynamics arising given resource-dependent payoff matrices
AðnÞ ¼ A0ð1 − nÞ þ A1ðnÞ, which interpolate between A0

and A1, the payoff matrices given deplete and replete
resource states, respectively, i.e., AðnÞ ¼ ½R0

T0

S0
P0
�ð1 − nÞ þ

½R1

T1

S1
P1
�n. This model of coevolutionary game dynamics

included feedback with the environmental state denoted
by 0 ≤ n ≤ 1, such that

ϵ_x ¼ xð1 − xÞ½rCðx; AðnÞÞ − rDðx; AðnÞÞ�; ð2Þ

_n ¼ nð1 − nÞ½θx − ð1 − xÞ�; ð3Þ

where ϵ is a speed parameter and θ denotes the strength of
cooperators in restoring the environment. In this coevolu-
tionary model, the payoff matrices A0 and A1 can have
markedly different Nash equilibria [5]. For example,
defection is uniformly favored when n ¼ 1 and coopera-
tion is favored when n ¼ 0, then the system can exhibit a
novel phenomenon termed an “oscillatory tragedy of the
commons” (o-TOC). An o-TOC denotes a trajectory in the
phase plan that approaches a heteroclinic cycle. Given a
replete environment, the population rapidly switches from
cooperation to defection, which then degrades the envi-
ronment. In the depleted environment, cooperators re-
establish, improving the environment, then defectors
invade and the cycle repeats. Other outcomes, including
a TOC and the aversion of a TOC can emerge given other
payoff matrices [4].
Individual-based coevolutionary game.—This coevolu-

tionary game model is the basis for our development and
analysis of an individual-based framework to assess the
influence of noise (first) and spatially explicit interactions
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(second) on the emergent dynamics of social context and
resources. To begin, consider a system comprised of nC
cooperators and nD defectors, such that N ¼ nC þ nD. A
single time step consists of N events. In each event, a
randomly chosen individual (the focal player) interacts with
another individual (the opponent) chosen at random. The
payoff to the focal player influences its probability to
reproduce. Critically in our proposed framework, success-
ful reproduction by the focal player replaces a randomly
chosen third individual (see [6] for a related public goods
model that decouples interaction and reproduction). The
following reactions denote those transitions that lead to a
change in the number of cooperators or defectors:

C
z}|{focal

þ C
z}|{

opponent

þ D
z}|{
random
player

⟶
k1 C

z}|{focal

þ C
z}|{

opponent

þ C
z}|{
replaced

C þ D þ D ⟶
k2 C þ D þ C

D þ C þ C ⟶
k3 D þ C þ D

D þ D þ C ⟶
k4 D þ D þ D;

ð4Þ

where ki denote reproduction rates.
In the three-individual framework, the master equation

for the dynamics of cooperators is

PðnC; τ þ ΔτÞ ¼ PðnC; τÞ þ TðnCjnC − 1ÞPðnC − 1; τÞΔτ
þ TðnCjnC þ 1ÞPðnC þ 1; τÞΔτ
− TðnC þ 1jnCÞPðnC; τÞΔτ
− TðnC − 1jnCÞPðnC; τÞΔτ þOðΔτ2Þ;

ð5Þ

where the transition rates are

TðnC þ 1jnCÞ ¼ k1nC
nC − 1

N − 1

nD
N − 1

þ k2nC
nD

N − 1

nD
N − 1

;

TðnC − 1jnCÞ ¼ k3nD
nC

N − 1

nC
N − 1

þ k4nD
nD − 1

N − 1

nC
N − 1

:

ð6Þ

In the Supplemental Material [7], we derive the expected
mean field dynamics for the frequency of cooperators x≡
limN;nc→∞ðnC=NÞ from the master equation

_x ¼ xð1 − xÞ½ðk1 − k3Þxþ ðk2 − k4Þð1 − xÞ�: ð7Þ

We recover the replicator dynamics of the coevolutionary
model when k1 ¼ RðnÞ, k2 ¼ SðnÞ, k3 ¼ TðnÞ, and
k4 ¼ PðnÞ. Hence, transition rates are a function of
resource- and social-context dependent payoffs. In contrast,
mean field dynamics derived via a two-player individual
based model formulation (IBM2) result in a logistic

dependency on x distinct from the cubic nonlinearity in
Eq. (7) (see Supplemental Material [7] for derivation and
details).
Effect of demographic noise.—In order to further evalu-

ate stochastic dynamics of the IBM formulation, we
simulated the joint dynamics of resources n and social
context x using N ¼ 104 individuals. A single time step
over an interval Δt includes N game steps followed by
changes in resource levels, nðtÞ according to Eq. (3) (see
Supplemental Material [7] for details). Hence, in this
formulation stochasticity is introduced only at the level
of the individuals. Given the master equation analysis, we
define reproduction rates ki based on the current environ-
mental state nðtÞ. Consistent with our finding from the
master equation, the simulation results of the individual-
based model involving three players (IBM3) recapitulate
predictions of the mean-field replicator dynamics model
(see Fig. 1, right). Specifically, we identify seven distinct
phases corresponding to the relative magnitude of payoffs
given the resource deplete state. The phases and their
asymptotic behavior agree qualitatively with mean-field
predictions. In contrast, if the focal player reproduces and
replaces the opponent (which we term IBM2, as is often
assumed in two-player variants of spatial games), then the
individual-based simulations diverge from predictions
(see Fig. 1, left) as anticipated from expected mean field
dynamics (see Supplemental Material [7]).
There are two notable quantitative differences in the

IBM3 simulations with respect to predictions from repli-
cator dynamics. First, whereas mean-field dynamics predict
convergence to a heteroclinic cycle (see the o-TOC region
in Fig. 1, right), the IBM simulations stochastically reach
an absorbing state on the boundary. Such a result is
anticipated in any finite size simulation, given that hetero-
clinic cycles asymptotically approach the boundary.
Second, the mean field model predicts closed periodc
orbits given certain symmetric properties of A0 and A1

[corresponding to the line with slope ðT1 − R1Þ=ðP1 − S1Þ
in Fig. 1, right.] In contrast, the IBM simulations have
demographic noise, which can lead to repeated oscillations
and convergence to a boundary (see Fig. S3).
Demographic noise and spatial structure.—To study the

combined effects of spatial structure and demographic
noise (see Ref. [8]) we extended the IBM3 framework to
a two-dimensional fully occupied lattice with L sites per
dimension given periodic boundary conditions, where the
N ¼ L2 individuals are either cooperators or defectors. The
focal player is selected at random and the opponent is
chosen randomly from the von Neumann neighborhood of
the focal player. We denote the position of the focal player
(opponent) as r⃗F (r⃗O). The focal player reproduces with
rate kmðsF; sO; n̄Þ given the strategy set of focal player and
opponent, sF and sO, and the average local environment,
n̄ ¼ ½nðr⃗FÞ þ nðr⃗OÞ�=2. Environmental state dynamics
nðr⃗; tÞ are augmented by diffusion, i.e.,
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∂n
∂t ¼ nð1 − nÞ½θx − ð1 − xÞ� þDn∇2n: ð8Þ

The diffusivity Dn controls the redistribution of resources
relative to population dynamics. In the case of finite
diffusion, the corresponding partial differential equation
is replaced by its spatially discretized version (see
Supplemental Material [7]).
Simulations of coevolutionary game-environment dynam-

ics reveal dramatic changes in outcomes given spatially
explicit interactions. Figure 2 compares dynamics of non-
spatial and spatial IBM models with three different diffusiv-
ities, Dn ¼ 0; 1;∞, classifying outcomes based on whether
there is a TOC or not (the latter we term averted, see
Supplemental Material [7] for criteria). The heat maps show
the proportion of averted cases among all replicates. Spatial
interactions enable TOC aversion when cooperation is
favored given a coordination game context (R0 > T0 and
S0 < P0, see upper left). However, spatial interactions also
restrict the parameter regimes where a TOC can be averted
given an anticoordination game context (R0 < T0 and
S0 > P0, see bottom right). For long-term dynamics, we find
that oscillating dynamics are typical in Dn ¼ ∞ cases (see
examples in the Supplemental Material [7]). Such oscillatory
dynamics can spiral inwards when TOCs are averted or
outwards to the boundary. Of note, amongst IBMmodels we
only observe a persistent o-TOC when Dn ¼ ∞, indicating
the role of strong spatial coupling to induce oscillations.
Spatiotemporal dynamics with environmental diffusion.—

We further investigated spatiotemporal dynamics focusing
on variation in Dn given parameter regimes with both

averted and TOC dynamics. These regimes correspond to
the case where S0 < P0, R0 > T0 and where R0 > −θðS0 −
P0Þ þ T0 (see bottom panels of Fig. 2). The results of

FIG. 2. Strategy-resource dynamics given spatial interactions.
Colors in each heat map denote the fraction of averted dynamics
out of 20 replicates with different A0’s. The horizontal axis of the
heat maps are S0 − P0 and the vertical ones are R0 − T0. Each
grid on the heat maps has increment 0.1. The diffusivity Dn is
shown in the title of each panel. Other parameters for all
replicates are L¼100, θ¼2, ϵ ¼ 0.5, Δx ¼ 1, and Δt ¼ 0.05,
A1 ¼ ½3; 0; 5; 1�. The white lines mark out the boundary of
different dynamics predicted by the mean field model. Full
parameter list for A0 in Fig. S2 in the Supplemental Material [7].

TOC

o-TOC

o-TOC TOC

TOC
TOC

TOC
TOC

TOC

TOC o-TOC

averted
averted

TOC
TOC

o-TOC

o-TOC TOC

TOC
TOC

TOC
TOC

TOC

TOC o-TOCC

averted
averted

TOC

FIG. 1. Coevolutionary dynamics of strategies and resources in replicator and IBM dynamics. (left) The dynamics with “IBM2,” in
which offspring of the focal player replace the opponent. (right) The dynamics with “IBM3,” in which offspring of the focal player
replaces a random individual. In both panels, parameter space is divided according to the sign of R0 − T0, S0 − P0. In each section in the
parameter space, a phase diagram with different A0 is shown, where the abscissa represents x and the ordinate denotes n. Light gray
trajectories are mean field solutions and black trajectories denote IBM dynamics where arrows denote the flow of time. Visualized IBM
trajectories are the average of 100 replicates with the same parameter set, except for oscillatory dynamics, given phase differences that
can arise due to demographic noise. Common parameters for all replicates: θ ¼ 2, ϵ ¼ 0.5, Δx ¼ 1, and Δt ¼ 0.05, A1 ¼ ½3; 0; 5; 1�;
A0 varies by region. Full parameter list for A0 in Fig. S1 in the Supplemental Material [7].
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spatially explicit IBM3 model simulations are shown in
Fig. 3 for Dn ¼ 0, 1 and ∞. Notably, all cases appear to
exhibit clustering amongst cooperators and the cases with
heterogeneous environmental dynamics (Dn ¼ 0 and
Dn ¼ 1) also appear to exhibit clustering between coop-
erators and environmental resource state. However, there
are markedly different types of emergent spatial patterns
given variation in the diffusivity of the environmental
resource state. In order to assess clustering quantitatively,
we analyzed the joint structure of social context and
resource levels by measuring the spatial cross-correlation
function

gCNðr; tÞ ¼
L2

AðrÞ
Σi;j½Σi0;j0xi;jðtÞ · ni0;j0 ðtÞ�
Σi;jxi;jðtÞΣi;jni;jðtÞ

; ð9Þ

and the spatial autocorrelation function of cooperator
clustering,

gCCðr; tÞ ¼
L2

AðrÞ
Σi;j½Σi0;j0xi;jðtÞ · xi0;j0 ðtÞ�

½Σi;jxi;jðtÞ�2
; ð10Þ

where r<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði− i0Þ2þðj−j0Þ2

p
≤ rþ1, and AðrÞ denotes

the number of lattice sites within this range in both cases.
We then fit the short-range components of the observed
correlation at a fixed time point to a decaying exponential,
i.e., gðr; tÞ ∼ 1þ αðtÞe−r=ξðtÞ given prefactor α and corre-
lation length ξ.
The spatial autocorrelation analysis confirms the emer-

gence of clustering amongst cooperators when the TOC is
averted, i.e., gCCðrÞ > 1 for r → 1 (see black lines in the
subpanels of Fig. 3). Yet there are marked differences in the
dynamics of the cross-correlation between cooperators and
the environmental state.
ForDn ¼ 0, the environment and cooperative population

propagate outward as a wave. The cooperative population
spreads, leaving patches of resource replete environments.
The gCNðrÞ plots shows that x and n can be positively
correlated as a wave initiates but negatively correlated once
defectors invade and replace resource replete environments,
leading to (often disjoint) patchy distributions of both
resources and cooperators. In contrast, for Dn ¼ 1, small
clusters of cooperators and localized resources form after
initial transient dynamics. This feature is captured by the
gCNðrÞ analysis, revealing strongly elevated cross-correla-
tion (see the middle row of Fig. 3) as well as a similar
pattern in the dynamics of gCCðrÞ and gCNðrÞ. We note that
these “gangs” of cooperators and their environmental “tail”
are chased by a dominant group of defectors (see Ref. [9]
for related findings in evolutionary PD models without
environmental feedback). Finally, given Dn ¼ ∞, the
resources are uniform across space. Cooperative clusters
grow towards system sizes due to the strong spatial
coupling mediated via fast resource diffusivity. The single
large cooperator cluster expands and shrinks over time with
increasing amplitude, as evidenced by the elevated auto-
correlation of gCCðrÞ in the bottom row of Fig. 3, with rapid
switches in resource state, leading to an eventual collapse
of the cooperator population. We do not report gCNðrÞ
given the uniform distribution of resources given Dn ¼ ∞.
Discussion.—In summary, we have developed an

individual-based framework to incorporate the effects of
demographic noise and spatial interactions [8] in coevolu-
tionary game dynamics that couple individual strategies
and the environment. The IBM involving three players in a
game recapitulates and generalizes earlier findings from a
coevolutionary game model, including the emergence of an
oscillatory tragedy of the commons [4]. Spatial interactions

FIG. 3. Spatiotemporal dynamics of resources and cooperators.
The background color represents the environment, while a red
square means a cooperator occupies the lattice site. The empty
sites are occupied by defectors. (Top row) Dn ¼ 0, a circular wave
of cooperative population propagates outward. (Middle row)
Dn ¼ 1, a few small patches of cooperators move around and
divide. (Bottom row) Dn ¼ ∞, a large cooperator cluster expands
and shrinks over time with increasing amplitude until extinction.
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can shift the domains in which a tragedy of the commons
may arise when compared to nonspatial models [10].
Spatially explicit dynamics also lead to novel, coherent
spatiotemporal patterns [11–15], including diffusive clus-
ters, flickering, and wavelike patterns. These joint dynam-
ics of resources and social strategies suggest multiple
avenues for future study, including formally deriving
effective PDEs to characterize whether the system permits
propagating waves in the large system limit. It will also be
critical to evaluate the extent to which spatial interactions
modify strategy-environment feedback in proposed gener-
alizations [16] of the replicator framework underlying the
present work [4] and in stochastic games with feedback
between behavior and public good states [17]. Finally, the
spatial framework developed here may also aid efforts to
understand how microorganisms produce and utilize public
goods, e.g., siderophores—extracellular iron harvesting
enzymes, as but one example of many [6,18–24]. Given
increasing pressures on limited resources, we intend to
leverage prior work on controlling mean-field strategy-
environment dynamics [25] to identify ways in which local
manipulation of resources, strategies, and/or perceptions
can help stabilize and conserve the commons.
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