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The distribution of dissolved iron (Fe), total organic Fe-binding ligands, and siderophores

were measured between the surface and 400m at Station ALOHA, a long term ecological

study site in the North Pacific Subtropical Gyre. Dissolved Fe concentrations were low

throughout the water column and strong organic Fe-binding ligands exceeded dissolved

Fe at all depths; varying from 0.9 nmol L−1 in the surface to 1.6 nmol L−1 below

150m. Although Fe does not appear to limit microbial production, we nevertheless

found siderophores at nearly all depths, indicating some populations of microbes were

responding to Fe stress. Ferrioxamine siderophores were most abundant in the upper

water column, with concentrations between 0.1 and 2 pmol L−1, while a suite of

amphibactins were found below 200m with concentrations between 0.8 and 11 pmol

L−1. The distinct vertical distribution of ferrioxamines and amphibactins may indicate

disparate strategies for acquiring Fe from dust in the upper water column and recycled

organic matter in the lower water column. Amphibactins were found to have conditional

stability constants (log Kcond
FeL1,Fe′

) ranging from 12.0 to 12.5, while ferrioxamines had

much stronger conditional stability constants ranging from 14.0 to 14.4, within the range

of observed L1 ligands by voltammetry. We used our data to calculate equilibrium Fe

speciation at Station ALOHA to compare the relative concentration of inorganic and

siderophore complexed Fe. The results indicate that the concentration of Fe bound to

siderophores was up to two orders of magnitude higher than inorganic Fe, suggesting

that even if less bioavailable, siderophores were nevertheless a viable pathway for Fe

acquisition by microbes at our study site. Finally, we observed rapid production of

ferrioxamine E by particle-associated bacteria during incubation of freshly collected

sinking organic matter. Fe-limitation may therefore be a factor in regulating carbon

metabolism and nutrient regeneration in the mesopelagic.
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FIGURE 3 | The 56Fe ICP-MS spectra (top) of ferrioxamine E (A) in the 15m sample, and amphibactin H in the 300m sample (D). (B,E) shows the extracted ion

chromatogram (EIC) of the 54Fe and 56Fe isotope peaks of ferrioxamine E and amphibactin H, respectively. Bottom panels show the MS2 fragmentation spectra from

the compound at the corresponding retention time for ferrioxamine E (C) and amphibactin H (F).

TABLE 3 | Siderophore and total iron binding ligand parameters determined at Station ALOHA.

Depth Fe L logK Fe’ FeL Fe(Ferrioxamine) Fe(Amphibactin) Ferrioxamine Total Amphibactin Total

m nmol L−1 nmol L−1 pmol L−1 pmol L−1 pmol L−1 pmol L−1 pmol L−1 pmol L−1

15 0.15 0.88 12.44 0.07 41.73 1.35 0.16 2.16 0.27

75 0.13 0.90 12.19 0.11 13.53 0.03 0.17 0.06 0.20

125 0.10 0.96 12.00 0.12 21.00 0.86 0.77 0.92 0.77

150 0.06 1.61 11.89 0.05 12.66 0.04 0.15 0.07 0.15

200 0.08 1.41 11.90 0.08 12.98 nd 0.65 nd 0.83

300 0.10 1.57 11.93 0.08 23.29 1.20 6.30 1.20 11.05

400 0.12 1.55 11.76 0.14 12.46 0.13 2.60 0.13 2.96

Dissolved iron (Fe), total iron-binding ligands (L), and conditional stability constants (logK) were determined using cathodic stripping voltammetry, and Fe’ (inorganic Fe) was calculated

by Fe
′

= Fe/[(L− Fe) × K]. Siderophore parameters were determined using LC-ICPMS and include a calculation of total iron-binding ligands (FeL; measured as the area under the

chromatographic curve in ICP-MS analyses), iron bound to ferrioxamine-type siderophores [Fe(Ferrioxamine)], iron bound to amphibactins-type siderophores [Fe(Amphibactin)], as well

as the total concentration of ferrioxamines (Ferrioxamine Total) and amphibactins (Amphibactin Total) after adding Fe to the sample and analyzing again by LC-ICPMS. The notation “nd”

refers to not determined.

Siderophore Production During Particle
Regeneration Incubations
To assess the potential contribution of particle regeneration
to the high concentrations of siderophores measured at 300
and 400m, we measured siderophore production from particle-
associated bacteria during organic matter regeneration of sinking
particles (Figure 5). Very low concentrations of siderophores
were observed in the water column at 150m, just below the DCM
(Figure 2), and in all treatments at the beginning of the particle
incubation experiments (Figure 5A; t= 0). The only siderophore
detected in the initial conditions of the incubation with no
particles added was ferrioxamine E (0.02 pmol L−1). After 1 day,
significantly higher concentrations of ferrioxamine E (0.4 pmol
L−1, t-test, p < 0.05) were detected in the particle amended
treatment, but not in the non-amended or sterilized controls

(Figure 5A). After 3 days, concentrations of ferrioxamine E
had not changed in the controls of sterilized treatments,
while concentrations in the +Particles treatments remained
high, within the range observed on day 1 (Figure 5A). The
production of ferrioxamine E in +Particle treatments was also
accompanied by an increase in heterotrophic bacteria compared
to control treatments (Figure 5B). However, no amphibactins
were observed in the experiment.

DISCUSSION

Siderophores at Station ALOHA
Dissolved Fe concentrations in the upper water column (<500m)
at Station ALOHA are generally low (0.1–0.5 nmol L−1;
Fitzsimmons et al., 2015), but not limiting (Boyle et al., 2005).
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At the time of our sampling, dissolved Fe concentrations were
>0.06 nmol L−1, but nevertheless siderophores were present at
several depths between 5 and 400m, with strikingly different
distributions in the upper and lower portions of our profile.
Ferrioxamine E was by far the most abundant siderophore in
the euphotic zone, with picomolar concentrations in the surface
(15m) and in the DCM (125m). We found small amounts of
ferrioxamine G at these depths as well. Both ferrioxamine E and
G have been found to be produced by the marine heterotroph
Pseudomonas spp. (Meyer and Abdallah, 1980; Essén et al., 2007),
and ferrioxamine G has been identified in cultures of marine
Vibrio species (Martinez et al., 2001). Ferrioxamines have also
been observed in the Atlantic (Mawji et al., 2008), and the coastal
Pacific (Boiteau et al., 2016). Summertime rates of primary
production and nitrogen fixation at Station ALOHA are highest
in the surfacemixed layer (<50m; Karl and Church, 2014; Böttjer
et al., 2017), where microbial Fe demand would be expected to
reach a maximum as well. Nitrogen fixing cyanobacteria such as
Trichodesmium and diatoms (Hemiaulus, Rhizoselenia), hosting
endosymbiotic diazotrophs (Richelia), are common in the upper
water column in summer (Karl et al., 2012), and may experience
Fe stress due to their higher Fe requirements and larger cell sizes.
A large fraction of Fe in ALOHA surface waters is supplied by
the deposition of atmospheric dust, which may include Fe in
a mineral form (Boyle et al., 2005; Fitzsimmons et al., 2015).
Ferrioxamines have very strong stability constants (log Kcond

FeL1 ,Fe′
>

14), and have been shown to be particularly effective at dissolving
Fe minerals (Akafia et al., 2014). Ferrioxamines E and G have
also been reported in surface waters of the oligotrophic North
Atlantic Ocean (Mawji et al., 2008), a region with moderately
high concentrations of Fe largely sourced from atmospheric dust
(Jickells et al., 2005; Mahowald et al., 2005; Conway and John,
2014) that supports abundant Trichodesmium spp. and Richelia-
diatom nitrogen fixers. Heterotrophic bacteria associated with
these nitrogen-fixing cyanobacteria are an additional possible
source of ferrioxamines at Station ALOHA, and perhaps at
other oligotrophic sites where Trichodesmium and diatom-
diazotroph associations are abundant, however direct evidence
of siderophore production from these assemblages has not been
observed.

Rates of primary production and nitrogen fixation fall rapidly
between 15 and 75m (Karl and Church, 2014; Böttjer et al.,
2017), while Fe concentrations remain relatively stable (∼0.1
nmol L−1). Only trace amounts of ferrioxamine G were detected
in our 75m sample, suggesting depth dependent changes in
bacteria species, microbial activity or Fe concentrations that
may decrease Fe stress. It is possible the bacteria responsible
for producing siderophores were absent at 75m, or perhaps
the combination of sufficient dissolved Fe and low(er) rates
of primary productivity and nitrogen fixation, may have
reduced the demand for Fe at 75m, making the synthesis
of siderophores unnecessary. Using similar reasoning, even
though Fe concentrations were at a minimum (0.06–0.08 nmol
L−1) in the 150 and 200m samples, the number of bacterial
cells, particularly photoautotrophs, falls rapidly below 125m
(Figure 1). The near absence of siderophores between 150 and

200m may indicate a decrease in Fe demand, or Fe stress overall,
within the community.

The highest concentration of siderophores in our profile was
found at 300m, where we detected a suite of seven amphibactins.
Amphibactins are hybrid compounds composed of a peptidic,
Fe-complexing portion, and a lipid portion that allows these
siderophores to form strong associations with cell membranes
(reviewed in Vraspir and Butler, 2009). These membrane
associations may reduce diffusive loss of amphibactins to the
environment, creating a more favorable energy balance between
Fe uptake and loss of siderophore to the environment. Although
dissolved Fe concentrations between 300 and 400m were ∼0.1
nmol L−1, nearly half the amphibactins in both samples were not
complexed to Fe. Addition of Fe to our 300m sample increased
the total Fe-amphibactin by ∼45%, from ∼6 to ∼11 pmol L−1.
Total amphibactin concentrations at depth at ALOHA were
similar to the values reported for surface waters of the HNLC
eastern tropical Pacific Ocean (Boiteau et al., 2016).

Amphibactins at 300m were most likely produced at depth,
and not passively introduced from the regeneration of sinking
particles or laterally from advection. Amphibactins were not
detected in any samples collected above 300m. Shipboard
incubations of sinking particles collected in sediment traps only
yielded small amounts of ferrioxamine E, but no amphibactins
were produced. Although the time scales of amphibactin cycling
at 300m may integrate longer periods than captured by our
euphotic zone sampling and particle incubation experiments,
we found no evidence of amphibactin production in the
euphotic zone and subsequent transport to depth. Therefore,
we inferred that amphibactins were synthesized by bacteria
at 300 and 400m. Such high concentrations of amphibactins
in the mesopelagic were surprising. Although there is some
evidence for Fe limitation of heterotrophic production in
surface waters of the Southern Ocean (Church et al., 2000),
low rates of bacterial production coupled to high dissolved Fe
concentrations characteristic of meso- and bathypelagic regions
were not expected to induce production of siderophores in higher
concentrations than in the euphotic zone.

We note that at Station ALOHA, water between 300 and 400m
forms the upper portion of the North Pacific Intermediate Water
(NPIW) salinity minimum, which outcrops in the low Fe region
of the northwest subpolar gyre (Talley, 1993). Concentrations
of dissolved Fe transported with NPIW are expected to be low,
and bioavailable Fe may represent only a fraction of the total
dissolved Fe. Low Fe bioavailability may be one factor inducing
Fe stress within the 300–400m zone. We expected that much
of the bioavailable Fe in the 300–400m region was supplied
from remineralization of Fe-containing proteins in sinking
particulate organic matter. Some Fe from this sinking organic
matter is bound by the ∼1.5 nmol L−1 strong ligands measured
by CLE-ACSV (discussed in the next section). Amphibactins
have conditional stability constants that are much weaker than
ferrioxamines, but are nevertheless strong enough to compete
with the other organic ligands for some portion of the dissolved
Fe. The distinct sources of Fe from dust and sinking particles to
the upper and lower regions of the Station ALOHAwater column
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FIGURE 4 | (A) Dissolved iron (Fe, open circles) and total ligands determined using electrochemical methods (Lcsv, black circles), (B) iron-bound ligands (FeL, open

circles) and total ligands (Ltot, black circles) determined by solid phase extraction, (C) and total concentrations (iron bound and excess) of ferrioxamines (ferrioxamine

G+E, black circles) and amphibactins (amphibactins T+S+D+E+H+I+F, open circles) throughout the water column at station ALOHA.

TABLE 4 | Conditional stability constants (logK) of isolated amphibactins from

Vibrio cyclitrophicus 1F-53, as well as model siderophores ferrioxamine E and B.

Ligand logK +/−

amphibactin T 12.40 0.03

amphibactin S 12.48 0.07

amphibactin D 12.07 0.15

amphibactin E 12.06 0.08

amphibactin C* 12.00 0.03

ferrioxamine E 14.05 0.09

ferrioxamine B** 14.42 0.08

*Amphibactin C was not observed in the water column, but was effectively isolated from

Vibrio cyclitrophicus 1F-53.
**Ferrioxamine B was not observed in the water column, but was used as a model

siderophore for ferrioxamine G.

may influence the types of siderophores microbes produce in and
below the euphotic zone.

Comparison of Ligand Distribution
Determined by CLE-ACSV and
Siderophores Measured by LC-ICPMS
Efforts to model Fe cycling and bioavailability have largely
focused on parameterizing the distribution of strong Fe-binding
ligands (L1) measured by CLE-ACSV (Tagliabue et al., 2014,
2016, 2017). It has long been assumed that siderophores are a
component of L1 (Gledhill and Buck, 2012). However, no direct
comparisons of siderophore and L1 concentrations have been
made. In this study we used CLE-ACSV with a single analytical
window rather than the multiple windows used in some other
studies (Bundy et al., 2014, 2015, 2016; Hogle et al., 2016a).
Thus, the ligands measured here likely represent an average of
the very strong (L1; logK

cond
FeL1 ,Fe′

> 12) and relatively strong (L2;

logKcond
FeL1 ,Fe′

< 12) ligandsmeasured by others (Gledhill and Buck,

2012; Bundy et al., 2014, 2016; Hogle et al., 2016a). Both L1 and
L2 are considered to be “strong” Fe-binding ligands, thus we will
refer to the ligands characterized by our measurements as strong
ligands.

Beyond simply comparing their distributions, there are two
important considerations for determining whether or not the
siderophores are detected as strong ligands by voltammetry. The
first is to consider whether or not siderophores fall within the
analytical window of CLE-ACSV. The analytical window of the
voltammetric measurements is defined by α′

CL, which is the side
reaction coefficient of the competitive ligand (CL) used in the
measurements. The side reaction coefficient is defined by,

α′
L = [L′]× Kcond

FeL,Fe′ (1)

where α′
L represents the side reaction coefficient of the ligand

(L) being considered, [L′] is the concentration of the free ligand,
and Kcond

FeL,Fe′ is the conditional stability constant (binding strength

to Fe). If α′
L is greater than or less than 10 times that of the

competing ligand (α′
CL) then the detection of that particular

ligand (in this case, the siderophore) is outside of the analytical
window of the voltammetric measurement (van den Berg and
Donat, 1992). We used salicylaldoxime (SA) as the competing
ligand in our analyses, which has α′

SA = 17.9. The α′
ferrioxamine is

∼200, more than 10 times α′
SA. The ferrioxamines we measured

at Station ALOHA by ICP-MS therefore, likely do not contribute
to the concentration of L determined by voltammetry. However,
the α′

amphibactins do fall within the range of the analytical window
used, so our measurement of L likely includes a contribution
from amphibactins.

The second important aspect that determines whether or not
siderophores were captured in the voltammetric measurements
is the kinetics of Fe exchange. Since the majority of the
ferrioxamines, as well as a portion of the amphibactins detected
in this profile were bound to Fe (Figure 2), it is possible the
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FIGURE 5 | (A) Concentrations of ferrioxamine E observed in particle incubation experiment on day 0, 1, and 3. (B) Flow cytometry cell counts during the incubation

experiment.

natural Fe bound to these compounds did not exchange with the
added Fe in the voltammetry titrations. If no exchange occurs,
those ligands will not be detected as a separate and distinct
ligand class by voltammetry (Gledhill and Buck, 2012), but will
be accounted for in the average ligand parameters. Laboratory
experiments of 56Fe:57Fe exchange between ferrioxamine E
and natural organic ligands in seawater suggest very slow
exchange kinetics (Boiteau, 2016). Coupled to the high value
of α′

ferrioxamine, our voltammetric measurements largely missed
any contribution of ferrioxamines to the total L pool. Fe
exchange kinetics for amphibactins are somewhat faster, but
are still slow relative to the equilibration times used in our
measurements (Boiteau, 2016). This exchange reaction may be
accelerated to some extent in the presence of high concentrations
of SA used in the titration via an associative mechanism. Our
voltammetric measurements therefore likely captured ∼45%
of apo-amphibactins at depth, and a small fraction of Fe-
amphibactins. Despite the encouraging coherence between the
concentration profiles of siderophores and L measured by
voltammetry (Figures 4A,B), the ligand pools measured by these
two methods only partially overlap. Many Fe-siderophores are
likely missed by traditional voltammetric techniques (Hawkes
et al., 2013), while LC-ICPMS only measures the fraction of
ligands captured by solid phase extraction.

Estimating the Contribution of
Siderophores to Iron Cycling at Station
ALOHA
Previous work at Station ALOHA has shown that Fe varies
seasonally and interannually in the upper 250m, and that organic
Fe-binding ligands often vary along with dissolved Fe with a
time lag on the order of days (Fitzsimmons et al., 2015). The
covariation in dissolved Fe and ligands suggests a dynamic
interaction between Fe and organic ligand production, as well as
active mediation of Fe cycling by the microbial community (Adly

et al., 2015). To estimate the potential availability of siderophore
bound Fe, we compared their concentration to inorganic Fe (Fe’)
which is thought to be the most bioavailable form of Fe (Table 3;
Shaked et al., 2005; Shaked and Lis, 2012; Lis et al., 2015).

In order to determine the relative contribution of siderophore
bound Fe, Fe’, and FeL to total dissolved Fe, we can consider the
equilibrium Fe speciation at Station ALOHA in our profile using
the following relationship,

Kcond
FeL,Fe′ =

[FeL]
[

Fe
′
]

[L
′
]

(2)

From this equation and values of L and K determined by
voltammetry, we can calculate the distribution of Fe’ and
compare that to the concentration of Fe bound by siderophores
determined by ICP-MS in order to infer the relative importance
of these species in biological Fe uptake. The amount of Fe
bound to siderophores at 15m is twice as high as inorganic
Fe (Fe’; Table 3). However, at 300m siderophore-bound Fe is
approximately two orders of magnitude higher (∼10 pmol L−1)
than inorganic Fe concentrations (0.1 pmol L−1; Shaked et al.,
2005; Shaked and Lis, 2012; Lis et al., 2015). Even at the lower
concentrations of siderophores present in surface waters (0.1–
2 pmol L−1), Fe-siderophore concentrations are still greater
than Fe’ due to the stronger conditional stability constants
determined at these depths (Table 3). Fe bound to unknown
ligands (L) in the chemical speciation calculations represent the
vast majority (99%) of the dissolved Fe. Although Fe’ is thought
to be the most bioavailable form of Fe (Lis et al., 2015), the
very low concentrations of Fe’ present in seawater suggest that
organic pools of Fe are very important. Based on data from
phytoplankton Fe uptake experiments (Lis et al., 2015), we can
infer that on average, FeL is taken up by phytoplankton at 1–10%
the rate of Fe’ uptake, while FeL concentrations are >100 greater
than Fe’ concentrations (Table 3).
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Dynamic Iron Cycling at Station ALOHA
The presence of siderophores in the upper water column
indicates that even though Fe is not thought to be limiting
at Station ALOHA, some populations of microbes are likely
responding to Fe stress, perhaps in response to low Fe
concentrations and high biological demand. Biological responses
to low Fe are not unprecedented at our study site, and have
been observed in surface waters due to dust events or passing
mesoscale eddies that contain elevated Fe (Fitzsimmons et al.,
2015). Our results show that the microbial response to low Fe
was not uniform throughout the Station ALOHA water column.
Siderophore concentrations and types changed rapidly with
depth. If Fe stress arises from a combination of Fe bioavailability,
concentration, and microbial Fe demand, the rapidly changing
profile of siderophores at Station ALOHA suggests these factors
are dynamic, and at least vertically, can change over spatial
scales of only a few tens of meters. The two major classes of
siderophores we observed, ferrioxamines and amphibactins, have
strikingly different conditional stability constants and abilities to
form associations with cell membranes. Their distribution in the
water column could be due to many factors, but it may reflect
subtle differences in the nature of Fe available for complexation.

Dynamic responses to Fe have primarily been observed in
surface waters, and the effects of Fe on mesopelagic communities
have been relatively understudied. The high concentrations
of siderophores between 300 and 400m, as well as the
rapid production of ferrioxamine E in our particle incubation
experiment at a rate of 0.08 pmol L−1 day−1 (Figure 5), indicate
that Fe bioavailability is a factor in organic matter degradation
below the euphotic zone. Our incubation results confirm results
from other studies (Boyd et al., 2010; Bundy et al., 2016;
Velasquez et al., 2016), and demonstrate that siderophores are
produced by bacteria associated with sinking particles. Sinking
particles are a microenvironment where macronutrients are
elevated, but Fe could be in forms that are not readily available
(Hogle et al., 2016b). It was surprising that no amphibactins were
produced in our experiment, however it may be that the short

duration of the incubation favored fast-growing, copiotrophic
bacteria that produce ferrioxamines (Cordero et al., 2012).
Regardless, the high concentrations of siderophores in this
profile, as well as the strong ligands observed in voltammetry
studies throughout the deep ocean (Buck et al., 2015; Gerringa
et al., 2015) suggests that bacteria are actively interacting with Fe
on sinking particles during the regeneration processes.
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