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Infection and lysis of phytoplankton by viruses affects population dynamics and nutrient

cycles within oceanic microbial communities. However, estimating the quantitative rates

of viral-induced lysis remains challenging in situ. The modified dilution method is the

most commonly utilized empirical approach to estimate virus-induced killing rates of

phytoplankton. The lysis rate estimates of the modified dilution method are based on

models which assume virus-host interactions can be represented by a single virus and

a single host population with homogeneous life-history traits. Here, using modeling

approaches, we examine the robustness of the modified dilution method in multi-strain,

complex communities. We assume that strains differ in their life history traits, including

growth rates (of hosts) and lysis rates (by viruses). We show that trait differences affect

resulting experimental dynamics such that lysis rates measured using the modified

dilution method may be driven by the fastest replicating strains; which are not necessarily

the most abundant in situ. We discuss the implications of using the modified dilution

method and alternative dilution-based approaches for estimating viral-induced lysis rates

in marine microbial communities.

Keywords: diversity, dilution method, trait-based models, viruses, viral lysis

1. INTRODUCTION

Viruses and grazers impact marine microbial populations and biogeochemical cycling. Grazing by
micrograzers transfers carbon from primary producers to higher trophic levels andmodifies rates of
remineralization and sinking of organic matter (Sherr and Sherr, 2002; Calbet and Landry, 2004).
Viruses are the most abundant and diverse biological entities in the known universe/ocean and
contribute significantly to phytoplankton mortality (Breitbart et al., 2018). Viral induced cellular
lysis may release resources that can be utilized by primary producers in the so-called “viral shunt”
(Fuhrman, 1999; Wilhelm and Suttle, 1999; Weitz andWilhelm, 2012). In facilitating this recycling
network, viral mediated mortality may actually enhance primary productivity in the ocean (Suttle,
2007; Weitz et al., 2015). In addition, some recent studies suggest viral-induced lysis may promote
particle aggregation and export via the “viral shuttle” (Weinbauer, 2004; Guidi et al., 2016; Sullivan
et al., 2017). It is clear that different cell fates can lead to differing biogeochemical consequences and
that quantifying the rates of grazing and viral lysis on marine microbes is important to understand
the dynamics of marine ecosystems.

The dilution method is the prevailing technique used to evaluate the impact of
grazers on microbial populations (Landry and Hassett, 1982). We term this the “classic”
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dilution method (CDiM). The CDiM measures the differential
rate of recovery across incubation experiments containing
different levels of diluted seawater. Themodified dilutionmethod
(MDiM) (Evans et al., 2003; Kimmance and Brussaard, 2010)
is used to quantify the impact of both grazing and viral lysis
on microbial populations. Empirical measurements made via the
MDiM suggest that both grazing and viral lysis are important
mortality drivers of marine microbes; and that both can be the
dominant source of mortality (Tsai et al., 2013; Mojica et al.,
2015; Pasulka et al., 2015). Yet, the MDiM can yield negative
rates of viral lysis (Pasulka et al., 2015) and there are concerns
about the ability to detect viral impact e.g., due to previously
infected cells, the length of latent period, and the specificty
of viral infection (Jacquet et al., 2005; Kimmance et al., 2007;
Kimmance and Brussaard, 2010; Pasulka et al., 2015). Irrespective
of the system, the core inference approach underlying the MDiM
assumes that the community includes a single, dominant host
and viral population. Whilst this has not prevented the MDiM
from being applied in natural ecosystems, whose diversity is
a subject of ongoing analysis at multiple scales (Fredrickson
et al., 2011; Menden-Deuer and Rowlett, 2014; Aylward et al.,
2017; Needham et al., 2017)—the implicit assumption of trait
heterogeneity may limit the performance of the MDiM within
diverse environments.

In this manuscript, we evaluate the potential for the modified
dilution method to infer viral lysis in complex multi-strain
communities. In doing so, we develop nonlinear dynamic models
of virus-host interactions taking place in diluted media. In
doing so, we also propose an alternative conceptual approach:
a virus dilution method (VDiM) which dilutes only viruses, but
not microbes. We find that the VDiM may reduce estimation
bias compared to the MDiM, particularly given multi-strain
scenarios. In doing so, we provide a theoretical framework to
connect empirical measurements with the nonlinear feedbacks
and interactions we are trying to infer. We hope that improved
estimates of viral lysis rates will deepen understanding of the role
of viruses in shaping community structure and biogeochemical
fluxes (Brussaard et al., 2008; Weitz et al., 2015; Mateus, 2017).

2. MATERIALS AND METHODS

2.1. Modified Dilution Method
The modified dilution method (Evans et al., 2003) utilizes
two dilution series: the classical dilution series which dilutes
phytoplankton and grazers (but not viruses) and the modified
dilution series which dilutes phytoplankton, grazers and viruses.

To determine rates of viral induced lysis using the modified
dilution method two parallel dilution series are created
(Figure 1A). Two diluents are created using different filter sizes;
the classic filter which excludes phytoplankton and grazers [as in
the classical dilution method (Landry and Hassett, 1982)], and
another filter small enough to exclude viruses, phytoplankton
and grazers. Typical filter sizes used to achieve these purposes
are 0.1 µm and 30 kDa, respectively (Tsai et al., 2013; Pasulka
et al., 2015). Each dilution series contains several incubation
experiments which comprise a different proportion F of sampled
seawater and (1 − F) diluent. Each incubation typically lasts

a day, upon which the change in phytoplankton abundance
is measured allowing the approximate growth rate within an
incubation bottle to be calculated. By plotting apparent growth
rate vs. dilution level (F), it is possible to draw dilution curves
for both the classical and modified dilution series (Figure 1C).
The expectation is that the slope of the classical dilution curve
is equivalent to the grazing rate (Landry and Hassett, 1982;
Kimmance and Brussaard, 2010; Beckett and Weitz, 2017), the
intercept of the modified dilution curve at F = 0 is the
phytoplankton growth rate (Kimmance and Brussaard, 2010),
whilst the slope of the modified dilution curve is the sum of
both grazing and lysis rates (Kimmance and Brussaard, 2010).
Hence, the difference in slopes between the classical andmodified
dilution curves is expected to be the viral lysis rate.

2.2. Virus Dilution Method
We propose an alternative conceptual approach to estimating
rates of viral-induced lysis of phytoplankton. The VDiM is
comprised of one dilution series. The virus dilution series dilutes
the ambient levels of viruses (but not phytoplankton or grazers).
Each incubation experiment within the viral dilution series
contains a proportion F of sampled seawater and a proportion
(1 − F) of seawater from which free viruses are removed. By
plotting the apparent growth rates of phytoplankton against
the dilution level (F) a viral dilution curve can be drawn.
Because only the concentration of viruses changes across the
virus dilution series, that the slope of the viral dilution curve
represents an alternative approach to infer viral lysis rates. We
recognize that practical implementation of this method may be
challenging and we return to this in section 4. However, we can
directly apply and assess the viral dilution methodology in silico
as a means to test the potential accuracy and associated biases of
the approach.

2.3. In silico Dilution Experiments
In silico dilution experiments were used to estimate
viral lysis and compare it against the model input
viral lysis rate. Ten dilution levels were used (F =

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) in each simulation
series. Apparent growth rates, r̃ , are calculated as:

r̃ =
1

T
log

(
P(T)

P(0)

)
(1)

where T is the length of incubation and P(0) and P(T) are
countable phytoplankton cell densities at the beginning (time 0)
and end of the incubation period (time T), respectively. Slopes
and intercepts of the respective dilution curves are estimated
using linear regression. Grazing rate is estimated as the slope of
the classical dilution curve and the viral lysis rate is estimated
by (a) the difference in slopes between the modified and classical
dilution curves and (b) the slope of the viral dilution curve.
Bias is calculated by dividing the estimated viral lysis rate by
the model input viral lysis rate. Ambient concentrations of
phytoplankton and viruses are assumed to be at steady-state.
Population dynamics are simulated using package deSolve v1.20
(Soetaert et al., 2010). All code is available at https://github.com/
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FIGURE 1 | Schematic representing the modified dilution method. (A) Scheme to generate the classical dilution series (top), by mixing WSW with a diluent that filters

out phytoplankton and grazers; and the modified dilution series (bottom) by mixing WSW with a diluent that filters out viruses (V), phytoplankton (P) and grazers (G).

(B) A diagram showing growth and mortality processes of phytoplankton P. (C) Idealized apparent growth curves from the classical and modified dilution series. Viral

lysis rates are estimated based on the differences between slopes of the classic and modified dilution curves.

sjbeckett/DilutionMethod-ViralLysisEstimation and is archived
at (Beckett and Weitz, 2018).

2.4. Non-linear Dynamics of Virus-Host
Interactions in the Bottle
2.4.1. Baseline Model
The densities of phytoplankton, grazers, and viruses are
represented as P, G and V , respectively. We can represent bulk
population dynamics of these groups (see Figure 1B) as:

dP

dt
=

logistic growth︷ ︸︸ ︷
rP

(
1−

P

K

)
−

lysis︷︸︸︷
φPV −

grazing︷︸︸︷
aPG

dV

dt
=

virion production︷ ︸︸ ︷
βφPV −

adsorption︷︸︸︷
φPV −

inactivation︷︸︸︷
ωV

(2)

where we assume that the population of grazers stays constant

within the time-scales of the dilution experiment (i.e., dG
dt

= 0
and G = G0 ). Here phytoplankton grow logistically with an
intrinsic maximal growth rate r up to a carrying capacity K, are
ingested by grazers at rate a and infected by viruses at rate φ. We
assume, for now, that viral induced lysis is instantaneous creating
a burst size, β , of viral progeny and that infective virions become
inactive at rate ω. The baseline model, described by Equation (2),
has an initial viral-induced lysis rate given by:

MB = φV0 (3)

where V0 indicates the viral concentration at the time of
sampling.

2.4.2. Extension 1: Considering Infection Dynamics
In the baseline model described in Equation (2) viruses
instantaneously lyse cells upon infection and there is no latent
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period. Here, we introduce an infected cell state, denoted I,
which represents infected cells that can produce viral progeny.
We assume that grazers are unable to differentiate between
susceptible and infected cells, which are grazed upon at equal
rates. The dynamics of this system are given as:

dP

dt
=

logistic growth︷ ︸︸ ︷
rP

(
1−

P + I

K

)
−

infections︷︸︸︷
φPV −

grazing︷︸︸︷
aPG

dI

dt
=

new infected︷︸︸︷
φPV −

grazing︷︸︸︷
aIG −

lysis︷︸︸︷
ηI

dV

dt
=

virion production︷︸︸︷
β̂ηI −

adsorption︷︸︸︷
φPV −

inactivation︷︸︸︷
ωV

(4)

where we set

β̂ = β
η

η + aG

so that the average burst size in the explicit infection model is
equal to that in the baseline model (Weitz, 2015). In the previous
model phytoplankton cells were directly lysed. Here, it is only
the phytoplankton cells in the infected class which lyse. As such,
the rate of viral-induced lysis in the sample MI , that we wish
to estimate is found as the rate of lysis from infected cells as
a proportion of the total cell concentration (both infected and
sucseptible cells):

MI =
ηI0

P0 + I0
(5)

where I0 and P0 denote the sampled concentrations of infected
and susceptible cells.

2.4.3. Extension 2: Effects of Strain Level Diversity
We extend the baseline model presented in Equation (2) to
include viral and phytoplankton strain diversity as:

dP1

dt
= r1P1

(
1−

P1 + P2

K

)
− φ1P1V1 − a1P1G

dP2

dt
= r2P1

(
1−

P1 + P2

K

)
− φ2P2V2 − a2P2G

dV1

dt
= β1φ1P1V1 − φ1P1V1 − ω1V1

dV2

dt
= β2φ2P2V2 − φ2P2V2 − ω2V2

(6)

where both phytoplankton populations are limited by the
same environmental conditions. For simplicity we assume that
phytoplankton differ in growth rate, and that viruses only differ
in their ability to adsorb to their respective hosts. Therefore we
assume both viruses have the same burst size, β1 = β2 =

β , and inactivation rates, ω1 = ω2 = ω. We also assume
that grazer clearance rates are the same regardless of prey type
(a1 = a2 = a). The range of life-history traits evaluated are
shown in Table 2. We consider this model in two ways. First, we

assume that the experimenter can tell the difference between the
two phytoplankton types P1 and P2 and is able to count them
separately. In this case the individual rates of viral-induced lysis,
M1 andM2, are found respectively as:

M1 = φ1V1 (0)

M2 = φ2V2 (0)
(7)

where V1 (0) and V2 (0) are the concentrations of each virus type
at sampling time. On the other hand, if the experimenter is unable
to identify differences between the phytoplankton types and
counts them together, then the community wide bulk averaged
rate of viral lysis,MC, with this model at sampling time is:

MC =

(
φ1V1(0)

)
P1(0)+

(
φ2V2(0)

)
P2(0)

P1(0)+ P2(0)
. (8)

We choose to evaluate the perfomance of both community
wide and individual viral lysis rate estimates. As before we
assume that sampled concentrations are taken at the steady
state for the system described in Equation (6) given in
Supplementary Data A.

3. RESULTS

3.1. Analytical Expressions for Dilution
Growth Rates
The difference in slopes between the classical and modified
dilution curves is expected to be the viral lysis rate. We can check
this expectation using the proposed dynamical model (Equation
2). By calculating the instantaneous per capita phytoplankton
growth rates for each incubation experiment at a particular
dilution level F we find analytical forms for each of the respective
dilution series:

classic filter︷ ︸︸ ︷
1

P

dP

dt

∣∣∣∣
FP0 , FG0 ,V0

=

intercept︷ ︸︸ ︷
(r − φV0) −

slope︷ ︸︸ ︷(
rP0

K
+ aG0

)
F (9)

modified filter︷ ︸︸ ︷
1

P

dP

dt

∣∣∣∣
FP0 , FG0 , FV0

=

intercept︷︸︸︷
r −

slope︷ ︸︸ ︷(
rP0

K
+ φV0 + aG0

)
F (10)

where P0, G0 and V0 are the initial sampled densities of
phytoplankton, grazers and viruses. The viral induced lysis
rate (φV0) in the sample can be calculated as the difference
between the slope values (or equivalently the intercepts) of the
two dilution curves (Kimmance and Brussaard, 2010). We also
consider an alternative approach—the VDiM–in which only
viruses are diluted. Following the viral dilution approach, one
can also estimate viral lysis as the slope from the corresponding
dilution curve:

virus−only filter︷ ︸︸ ︷
1

P

dP

dt

∣∣∣∣
P0 ,G0 , FV0

=

intercept︷ ︸︸ ︷
r

(
1−

P0

K

)
− aG0 −

slope︷ ︸︸ ︷
(φV0)F. (11)
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TABLE 1 | Life history trait ranges used in the in silico dilution experiments used to create example and scanning plots.

Symbol Description Value/Range Units

P Denisty of susceptible phytoplankton cells Variable Cells ml−1

I Denisty of infected phytoplankton cells Variable Cells ml−1

V Density of infectious viral particles Variable Virions ml−1

G0 Density of grazers 1,000 Grazers ml−1

r Intrinsic per capita growth rate of phytoplankton 1 Day−1

K Carrying capacity of phytoplankton 2.2× 107 (or scanned) Cells ml−1

φ Adsorption rate of viruses to phytoplankton 10−8 ml/(virions·hour)

β Burst size 50 Virions/cell

ω Viral inactivation rate 0.48 Day−1

a Grazer filtering rate 2× 10−6 (or scanned) ml/(grazers·hour)

TABLE 2 | Life history trait values used in the strain-level in silico dilution experiments.

Symbol Description Value/Range Units

P1 Denisty of phytoplankton type 1 cells Variable Cells ml−1

P2 Denisty of phytoplankton type 2 cells Variable Cells ml−1

V1 Density of infectious viral type 1 particles Variable Virions ml−1

V2 Density of infectious viral type 2 particles Variable Virions ml−1

G0 Density of grazers 1000 Grazers ml−1

r1 Intrinsic per capita growth rate of P1 0.1− 10 Day−1

r2 Intrinsic per capita growth rate of P2 0.2 Day−1

K Carrying capacity of phytoplankton 2.2× 107 Cells ml−1

φ1 Adsorption rate of V1 to P1 10−10 − 10−7 ml/(virions·hour)

φ2 Adsorption rate of V2 to P2 10−10 ml/(virions·hour)

β Burst size 50 Virions/cell

ω Viral inactivation rate 0.48 Day−1

a Grazer filtering rate 4.8× 10−5 ml/(grazers·day)

Phytoplankton type 1 and virus type 1’s traits are varied within the given range, whilst phytoplankton type 2 and virus type 2’s traits are kept fixed.

This suggests the viral dilution approach could be used as an
alternative or complementary step in estimating viral lysis rates.
Given these analytical expressions, we would expect the MDiM
and the VDiM to perform well in the instantaneous limit. But
inferences based on instantaneous growth rate measurements
may not correspond well to growth rates based on measurements
collected after a 24 h incubation, during which the populations
of viruses, in addition to cells, will deviate from their initial
values.

We attempted to derive analytical expressions for each of
the model extensions. For the model including an infected class
(Equation 4) our analytical expressions were unable to predict
that we should recover viral lysis (see Supplemental Data D).
This is due to the fact that the expression for total phytoplankton
(susceptible and infected) per capita growth rates does not
explicitly depend on the concentration of viruses, rather the rate
of lysis is dependent on the concentration of infected cells. Whilst
we were unable to recover the rate of viral-induced lysis using
analytical expressions, we do not use this as evidence against the
performance of dilution based approaches. Rather, this shows
that even limited changes to nonlinear responses can make what

may appear to be straightforward predictions difficult to analyse.
In the second model extension, where diversity is examined, we
were able to derive analytical expressions for the dilution curves.
The case in which the experimenter can distinguish between
phytoplankton types is trivially similar to that given for the
baseline model. In the case in which the experimenter cannot
distinguish between phytoplankton types we find theoretical
expectations for the classic dilution series curve as:

classic filter︷ ︸︸ ︷
Ṗ1 + Ṗ2

P1 + P2

∣∣∣∣
FG0 , FP1 , FP2 ,V1 ,V2

=

intercept︷ ︸︸ ︷
P1 (r1 − φ1V1) + P2 (r2 − φ2V2)

P1 + P2
−

slope︷ ︸︸ ︷(
(r1P1a1 + r2P2a2)G0

P1 + P2
+

r1P1 + r2P2

K

)
F (12)
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and for the modified dilution series:

modified filter︷ ︸︸ ︷
Ṗ1 + Ṗ2

P1 + P2

∣∣∣∣
FG0 , FP1 , FP2 , FV1 , FV2

=

intercept︷ ︸︸ ︷
r1P1 + r2P2

P1 + P2

−

slope︷ ︸︸ ︷(
(r1P1a1+ r2P2a2)G0+φ1V1P1+φ2V2P2

P1+ P2
+

r1P1+ r2P2

K

)
F.

(13)

The difference in both the intercepts and the slopes of these series
(Equations 12, 13) is equal to the bulk-average rate of viral lysis
in the community:

(φ1V1) P1 + (φ2V2)P2

P1 + P2
(14)

as previously defined in Equation (8). Similarly for the VDiM, we
find:

virus−only filter︷ ︸︸ ︷
Ṗ1 + Ṗ2

P1 + P2

∣∣∣∣
G0 ,P1 , P2 , FV1 , FV2

=

intercept︷ ︸︸ ︷
P1 (r1 − a1G0) + P2 (r2 − a2G0)

P1 + P2
−

r1P1 + r2P2

K

−

slope︷ ︸︸ ︷(
(φ1V1)P1 + (φ2V2) P2

P1 + P2

)
F (15)

where the slope is predicted to estimate the bulk-average rate of
viral lysis for the community, as defined in Equation (8). As such,
the expectation is that we should be able to infer rates of viral lysis
at both the type- and community-level for the system described
in Equation (6).

Whilst these analytical expressions match our expectations
under instantaneous measurement, the ability to which they are
able to do so may differ depending on the life-history traits
exhibited in the microbial community. Whilst growth increases
the phytoplankton population, this can be limited through niche
competition and by the top-down controls of grazing and viral
lysis. At steady state these limitation processes are equal to
growth (Figure 2). The ability to estimate viral lysis rates might
depend on which of these limitation mechanisms is dominant.
We now use in silico dilution experiments to test and evaluate
these expectations.

3.2. Evidence of Potential Bias in Lysis
Rate Estimates
Figure 3 shows the rate estimates for growth, grazing, and viral
lysis made by the CDiM, MDiM, and VDiM following a 24 h
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FIGURE 2 | Schematic representing mortality processes affecting the

phytoplankton. The sum of three mortality processes: grazing, viral-induced

lysis, and niche competition must add to 100%. Grazing and lysis are

indicated on the axes, whilst niche competition is indicated by shading. 5, 50,

and 95% isoclines of niche competition are labeled.

incubation of the population dynamics described in Equation
(2) using parameters in Table 1. Figure 3A shows the population
dynamics of phytoplankton cells and viruses from time 0 to 24
h (as indicated by arrows) within individual incubation bottles
in each of the three types of dilution series. This phase portrait
shows that the dynamical trajectories of viruses and cells differ
across incubation bottles, but also that they oscillate around the
systems fixed point - in our simulations the sampled density
of viruses and cells. Apparent growth rates were calculated
for each incubation bottle in each of the classic, modified
and viral dilution series using Equation (1) and are plotted in
Figure 3Bwith the best fitting linear regression. All three dilution
curves appear to be linear. Using the intercept and slope values
calculated from the dilution curves as defined by the CDiM,
MDiM, and VDiM protocols we compare inferred ecological
rates to model input rates in Figure 3C. Note that only the
MDiM provides estimates of all rates simultaneously; and that
the CDiM and MDiM estimate grazing the same way and are
therefore equal. For this set of parameters the CDiM appears
to underestimate growth rates, whilst grazing rates appear to be
overestimated. Both the MDiM and the VDiM infer high rates
of viral lysis. However, the MDiM underestimates the viral lysis
rate. The mechanistic basis for these biases in estimates of lysis
rates can be understood in terms of the nonlinear dynamics that
arise in 24 h (see Figure 3A) vs. those expected given the theory
of instantaneous lysis. The signal of these nonlinear dynamics is
not apparent from analysis of the dilution curves.

3.3. Robustness of Lysis Rate Estimates to
Variation in Life History Traits
To explore the robustness of viral-induced lysis rate estimation
we examined different parameter regimes using two approaches.
In the first, we changed the relative amounts of bottom-up to
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FIGURE 3 | Inference of ecological rates using dilution methods. (A) Population dynamics of phytoplankton cells and viruses within individual incubation bottles from

the classical, modified and virus dilution series between 0 and 24 h. The intital sampled concentrations of cells and viruses (F = 1) are shown as the single point. (B)

Dilution curves constructed from calculations of apparent growth rates within each of the incubation bottles at 24 h. (C) Comparing model rate inputs to

dilution-based rate estimates of growth, grazing, and viral induced lysis derived from the dilution curves.

top-down mortality, as well as the ratio between viral-induced
and grazing mortality (consistent with the indicated isoclines of
niche competition in Figure 2, details in Supplementary Data B)
which are shown using 24 h incubations in Figure 4. This
indicates that both the MDiM and the VDiM performed better
when bottom-up mortality i.e., niche competition is low. The
VDiM performed best when niche competition was low, but
the MDiM provided better estimation when niche competition
was high. The relative amount of top-down mortality partitioned
between viral lysis and grazer did not appear to change the
estimation bias associated with the different methods.

The analytical results suggest that both the modified and viral
dilution methods should work well under near-instantaneous
measurement. Hence, we repeated this procedure using a shorter
incubation period to see its effect on viral lysis estimation.
Figure 5 shows that using a 2 h incubation period dramatically
improves estimation ability across all conditions. Again, we see
that the VDiM appears to provide better estimates than the
MDiM when niche competition is low, but the reverse is true
when niche competition is high.

In order to further address the robustness of the two
inference methods to differences in life-history traits and
model parameterization we used a Latin Hypercube sampling
design to assess estimation ability from an ensemble of
model simulations which were assessed using short (2 h) and
long (24 h) incubations. The parameter ranges are shown
in Table 3. These results suggest shorter incubations may
improve estimation of viral-induced lysis and that the VDiM
is potentially more robust across systems with different life-
history traits (Figure 6). However, we note that there was
a large variation in the efficacy of both methods and that
the VDiM could erroneously report a negative lysis rate
estimate.

3.4. Robustness of Lysis Rate Estimates
Given Variation in Viral Latent Periods
The results from the baseline model (Figures 3–6) suggest
that viral-induced lysis rate estimation may be improved by
using shorter incubations and, in some instances, the viral
dilution method. However, the baseline model assumes that viral
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FIGURE 4 | Rate estimates (Left) and bias (Right) of viral lysis rate in the baseline model following 24 h incubation. Each row shows a different level of niche

competition as indicated by the lines across Figure 2 (top: 5%, middle: 50%, bottom: 95% niche competition).

TABLE 3 | Life history trait ranges used in the in silico dilution experiments used to create density plots.

Symbol Description Value/Range Units

P Denisty of susceptible phytoplankton cells Variable Cells ml−1

I Denisty of infected phytoplankton cells Variable Cells ml−1

V Density of infectious viral particles Variable Virions ml−1

G0 Density of grazers 1,000 Grazers ml−1

r Intrinsic per capita growth rate of phytoplankton 0.1− 2 Day−1

K Carrying capacity of phytoplankton 106 − 108 Cells ml−1

φ Adsorption rate of viruses to phytoplankton 10−10 − 10−7 ml/(virions·hour)

β Burst size 10− 100 Virions/cell

η Infected lysis rate (inverse latent period) Day−1

ω Viral inactivation rate 0.2− 5 Day−1

a Grazer filtering rate 10−7 − 10−4 ml/(grazers·hour)

Parameter choices were made from these ranges using a random latin hypercube sampling design.

adsorption leads to instantaneous cellular lysis and release of
new infectious virions. Using the extended model that includes
infected phytoplankton (Equation 4) we ask whether the latent
period duration affects inference of viral lysis rates. We chose
to examine this model using three different latent periods: 15

min, 4 and 24 h. A similar analysis to that in Figures 4, 5, using
the extended model, is shown in Supplementary Data C,E,F via
Figures S1–S6.

The results from a system with a short 15 min latent period
(Figure 7A and Figures S1, S4) are qualitatively similar to the
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FIGURE 5 | Rate estimates (Left) and bias (Right) of viral lysis rate in the baseline model following 2 h incubation. Each row shows a different level of niche

competition as indicated by the lines across Figure 2 (top: 5%, middle: 50%, bottom: 95% niche competition).

baseline model. However, the efficacy of both the MDiM and the
VDiM is reduced relative to that found under the assumptions
of the baseline model—this is particularly apparent in comparing
the estimation bias under a short incubation (Figure S1 relative
to Figure 5). This can be seen firstly by the drop in observed
variation of estimation bias following a 2 h incubation for a
4 h latent period (Figure 7B and Figure S2) and a 24 h latent
period (Figure 7C and Figure S3). Additionally, as can be seen
in Figures 7B,C when the latent period exceeds the incubation
period, the estimates from both theMDiM and the VDiM are not
only low, but also quantitatively similar. During 24 h incubations
the VDiM appears more robust than the MDiM, Figures 7B,C,
but both methods had large variation in estimation bias.

3.5. Strain Level Diversity May Effect the
Ability to Estimate Viral-Induced Lysis
Life-history trait differences between the members of interacting
microbial communities could lead to biased measurements

within dilution method experiments. To highlight this potential
effect we consider a community with two phytoplankton types P1
and P2, which are each infected by a strain-specific virus, V1 and
V2. We further assume that P1 has a faster growth rate relative
to P2, but has a lower ambient steady-state concentration, as
shown in Figure 8. This is an expectation of Kill-the-Winner
dynamics in which faster growing phytoplankton are capable
of supporting a larger virus population via negative density-
dependent selection (Thingstad, 2000; Zhao et al., 2013).
Following the dilution of populations (time 0 h) type P1 is
able to recover much faster than type P2. If the observer is
unable to distinguish between these two phytoplankton types
a different dynamic is apparent and may lead to misleading
interpretations of viral-lysis in the community. In Figure 8B

the model input rates of viral-lysis and the corresponding
estimates of viral-induced lysis are shown at the level of the
community and at type-level. Here, viral-induced lysis was
underestimated at the type levels for both phytoplankton.
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However, the community viral-induced lysis rate was
overestimated.

To explore the ability of the modified and viral dilution
methods to robustly estimate viral-induced lysis rates in
phytoplankton communities we fixed the life-history traits of
phytoplankton type P2 whilst varying the ambient concentration
and growth rates of phytoplankton P1. The results are shown
following a 2 h incubation in Figure 9 and following a 24 h
incubation in Figure 10. Similarly to the baseline model we
find that estimation ability improves with shorter incubation
periods, but we note that this model does not include an infected
class and lysis is instantaneous. Community estimates of viral-
induced lysis may be overestimated or underestimated depending
on the life-history traits in the community. These effects are
larger during 24 h incubations than 2 h incubations. Following
a 2 h incubation the 95% quantiles of estimation bias reported
in Figures 9, 10 are (0.98, 1.34) for the MDiM and (1.00, 1.21)
for VDiM; but following a 24 h incubation are (−0.14, 5.63)
for MDiM and (0.14, 1.69) for VDiM. The regimes in which
overestimation and underestimation occur are also dependent
on observation timing. At the type-level (bottom two rows)
we see both the MDiM and the VDiM generally underestimate
viral-induced lysis rate across the variation in life-history traits.

4. DISCUSSION

We have systematically analyzed the potential for dilution-based
methods to infer viral lysis rates of phytoplankton. In doing so
we have combined nonlinear models of community dynamics
in a specific experimental context. We derived equations for
expected dilution curves (Equations 9, 10) which provides a
principled basis for why the difference in these slopes may be
able to approximate viral lysis. We were also able to recover

the rate of viral lysis when analysing the case of viral dilution
(Equation 11), under the knowledge that this analysis represents
instantaneous expectations, and not those after a long incubation
period. However, our in silico simulations suggest viral lysis rate
may be difficult to measure in practice.

Our simulation results suggest that estimation ability of
viral-lysis rates is poorer under increased bottom-up control
via niche competition. This complements previous research in
which we found that niche competition might also reduce the
ability to estimate grazing rates (Beckett and Weitz, 2017). This
suggests greater understanding of the nutrient and incubation
conditions and how they relate to the physiology of plankton
communities in dilution experiments is necessary. Nutrient
addition is commonly used to alleviate nutrient limitation within
dilution experiments. As highlighted by Calbet and Saiz (2017)
different nutrient addition treatments are applied within different
dilution experiments. As well as asking how nutrient addition
effects niche competition, future consideration should be given
to how particular organisms will differentially respond to a
particular nutrient addition strategy (Lagus et al., 2004) and
how this affects the ability to learn about in situ ecological
processes.

We investigated two potential approaches to improve
estimates of viral-induced lysis rates—reducing incubation
length in the MDiM and applying a new, VDiM in which only
virus concentrations are diluted. Reducing incubation timing
appeared to improve estimation ability under circumstances
when the incubation length was greater than the infection
latent period. This suggests a priori knowledge of latent periods
could help improve experimental design—however such a priori
knowledge may not be available in situ. Our simulations do not
model how ecological processes may be effected by diel forcing
e.g., Arias et al., 2017, which could be an additional complicating
factor in attempting to use dilution based approaches to
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estimate ecological rates of phytoplankton, grazers, and
viruses.

The VDiM did appear to have improved efficacy relative
to the MDiM when populations were not limited by bottom-
up control. In order to practically implement the VDiM

we see two possibilities. First, empiricists could attempt to
resuspend viruses e.g., using flocculation techniques (John
et al., 2011; Poulos et al., 2018). A different approach to
achieving a gradient of viral dilution could be to use the
filtrate (as opposed to the diluent) of the classical dilution
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filtered water and mixing this with whole seawater at different
proportions.

Figure 3 represents a cautionary tale for the field in the
interpretation of dilution experiments. Observations made using
dilution experiments typically find similar rates of phytoplankton
growth and grazing mortality (e.g., Morison and Menden-
Deuer, 2017 . However, as shown in Figure 3 it is important to
remember the ecological context of such measurements—growth
rate estimates made by the classical dilution method are limited
by the activity of viruses and hence may be underestimated.
We caution empiricists to consider the role of viruses in future
experiments.

In addition to treating phytoplankton and viruses as bulk
entities, we investigated how well dilution based estimates
performwhen diversity is included at both type- and community-
level. We found that fast growing strains have the potential
to recover quickly and therefore dominate the apparent lysis
rate, even if they are relatively small contributors to the
true signal. This level of virus-host interaction complexity
remains over-simplified. Virus-host interactions are expected to
be highly specific (though some viruses have been observed
to infect across phyla; Malki et al., 2015). Nonetheless, at
the strain level there may exist a range of specialist to
generalist virus types (Weitz et al., 2013). In addition we
continue to treat grazers as a bulk entity, though Calbet and
Saiz (2013) find that trophic chains can affect the results of
dilution experiments. Grazing is also assumed to be non-
preferential which is an assumption that could be challenged
(Wirtz, 2014; Pasulka et al., 2015). The structure of the

network of interactions between viruses, phytoplankton cells
and grazers will affect both the observed population dynamics
and the expected individual type- and community-level rates of
mortality. Investigating how well simple approximations, such as
those made by bulk-population models of the dilution method,
work in more complex ecological communities warrants further
investigation.

There are a number of additional assumptions that could
prove limiting to the dilution method. Inherent in our
assumptions are that life-history traits are constant and do
not vary in time or with changing environmental conditions
during the incubation time. Additionally we assume that grazing
and viral infection processes are linearly affected by dilution
(i.e., Holling type I) which may be a simplistic assumption.
Saturation in grazing responses (Li et al., 2017), or viral infection
(Kimmance and Brussaard, 2010) could lead to nonlinear
dilution curves which need different methods of interpretation.
Without observations of the population dynamics between
the beginning and end of the dilution experiments it may
be difficult to assess the appropriateness of the conceptual
mechanistic framework fromwhich dilution-based rate estimates
are inferred. We assume that the filters used by the classical,
modified and viral dilution series all perform perfectly which
may not be the case (e.g., Pasulka et al., 2015), and that
nutrient levels are not reduced by dilution (though see Pasulka
et al., 2015). Additional challenges arise from consideration of
nutrient regeneration via viral lysis, lysogeny, the potential for
preferential grazing on infected cells, removal of free viruses
by grazing (Kimmance and Brussaard, 2010) and mixotrophy
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FIGURE 9 | Estimation bias in viral lysis rates by the modified dilution method (Left) and viral dilution method (Right) following a 2 h incubation. Rows show

community-wide estimates (Top), P1 estimates (Middle), and P2 estimates (Bottom). White contours indicate an estimation bias equal to one, where the estimated

rate is equal to the model input.

(Caron, 2016). These could all serve as routes for future
study.

We have shown that even with perfect measurement ability,
large uncertainty exists in the ability of dilution based methods
to estimate rates of viral-induced lysis. These uncertainties are
related to mismatch between the expectation of exponential
recovery from dilution for the bulk community and predicted
nonlinear dynamics and time-delayed feedbacks within complex
microbial communities of viruses, grazers and their microbial
prey. For the cases outlined in our manuscript, the VDiM
provides better estimation of viral induced lysis than the MDiM.
The strength of such an approach is that it only requires one,
rather than two dilution series. However, the VDiM is unable

to provide estimates of growth or grazing rates, and it has yet
to be demonstrated in practice. We also note that both methods
exhibited strong sensitivity to the length of incubation relative to
the latent period. Shorter incubations improve estimation ability,
but the ability to infer viral mediatedmortality is severely reduced
when the incubation length is shorter than the latent period. We
suggest that both increasing the temporal sampling resolution,
and increasing our resolution of community membership and
individual virus-host linkages that exist within dilution-based
experiments will be an important future step in helping to
constrain estimates of growth, grazing, and viral-induced lysis
rates. Improving estimates of viral effects in situ requires that we
revisit the mechanistic assumptions of experimental protocols in
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FIGURE 10 | Estimation bias in viral lysis rates by the modified dilution method (Left) and viral dilution method (Right) following a 24 h incubation. Rows show

community-wide estimates (Top), P1 estimates (Middle), and P2 estimates (Bottom). White contours indicate an estimation bias equal to one, where the estimated

rate is equal to the model input. Red contours indicate an estimation bias of zero. This shows where dilution slopes go from negative to positive such that estimates of

viral lysis rates take negative values.

light of the increasing understanding of the diversity of marine
microbial and viral communities.
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