1' frontiers
in Microbiology

ORIGINAL RESEARCH
published: 03 September 2018
doi: 10.3389/fmich.2018.01850

OPEN ACCESS

Edited by:
Télesphore Sime-Ngando,
Centre National de la Recherche
Scienti que (CNRS), France

Reviewed by:

Stéphan Jacquet,

Institut National de la Recherche
Agronomique (INRA), France
Pradeep Ram Angia Sriram,
UMR6023 Laboratoire
Microorganismes Génome Et
Environnement (LMGE), France

*Correspondence:
Stephen J. Beckett
sjbeckett@gatech.edu

Specialty section:
This article was submitted to
Aguatic Microbiology,
a section of the journal
Frontiers in Microbiology

Received: 07 March 2018
Accepted: 24 July 2018
Published: 03 September 2018

Citation:
Beckett SJ and Weitz JS (2018) The
Effect of Strain Level Diversity on
Robust Inference of Virus-Induced
Mortality of Phytoplankton.
Front. Microbiol. 9:1850.
doi: 10.3389/fmich.2018.01850

Check for
updates

The Effect of Strain Level Diversity on
Robust Inference of Virus-Induced
Mortality of Phytoplankton

Stephen J. Beckett * and Joshua S. Weitz 2
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Infection and lysis of phytoplankton by viruses affects poglation dynamics and nutrient
cycles within oceanic microbial communities. However, eghating the quantitative rates
of viral-induced lysis remains challengingn situ. The modi ed dilution method is the

most commonly utilized empirical approach to estimate virstinduced killing rates of
phytoplankton. The lysis rate estimates of the modi ed diltion method are based on
models which assume virus-host interactions can be represated by a single virus and
a single host population with homogeneous life-history tigs. Here, using modeling
approaches, we examine the robustness of the modi ed dilutbn method in multi-strain,
complex communities. We assume that strains differ in thelife history traits, including
growth rates (of hosts) and lysis rates (by viruses). We shothat trait differences affect
resulting experimental dynamics such that lysis rates meased using the modi ed

dilution method may be driven by the fastest replicating s&ins; which are not necessarily
the most abundant in situ. We discuss the implications of using the modi ed dilution
method and alternative dilution-based approaches for estiating viral-induced lysis rates
in marine microbial communities.

Keywords: diversity, dilution method, trait-based models, v iruses, viral lysis

1. INTRODUCTION

Viruses and grazers impact marine microbial populations andjeachemical cycling. Grazing by
micrograzers transfers carbon from primary producers to leigiophic levels and modi es rates of
remineralization and sinking of organic mattesiierr and Sherr, 2002; Calbet and Landry, 2004
Viruses are the most abundant and diverse biological estitiethe known universe/ocean and
contribute signi cantly to phytoplankton mortalityBreitbart et al., 2013 Viral induced cellular
lysis may release resources that can be utilized by primagumers in the so-called “viral shunt”
(Fuhrman, 1999; Wilhelm and Suttle, 1999; Weitz and Wilhelm, 2dhZacilitating this recycling
network, viral mediated mortality may actually enhance prigngroductivity in the ocean$uttle,
2007; Weitz et al., 20).An addition, some recent studies suggest viral-indugsgsimay promote
particle aggregation and export via the “viral shuttlé/€inbauer, 2004; Guidi et al., 2016; Sullivan
etal., 201). Itis clear that di erent cell fates can lead to di ering biegchemical consequences and
that quantifying the rates of grazing and viral lysis on marmicrobes is important to understand
the dynamics of marine ecosystems.

The dilution method is the prevailing technique used to evtuahe impact of
grazers on microbial populationsLéndry and Hassett, 1982We term this the “classic”
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dilution method (CDiM). The CDiM measures the di erential a day, upon which the change in phytoplankton abundance
rate of recovery across incubation experiments containings measured allowing the approximate growth rate within an
di erentlevels of diluted seawater. The modi ed dilution t®d  incubation bottle to be calculated. By plotting apparent gtowt
(MDiM) (Evans et al., 2003; Kimmance and Brussaard, Y01¢gate vs. dilution levelR), it is possible to draw dilution curves
is used to quantify the impact of both grazing and viral lysisfor both the classical and modi ed dilution serieBigure 1C).
on microbial populations. Empirical measurements made via th&he expectation is that the slope of the classical dilution eurv
MDiM suggest that both grazing and viral lysis are importantis equivalent to the grazing ratd_gndry and Hassett, 1982;
mortality drivers of marine microbes; and that both can be th Kimmance and Brussaard, 2010; Beckett and Weitz, 2 @heé
dominant source of mortality Tsai et al., 2013; Mojica et al., intercept of the modied dilution curve atF D O is the
2015; Pasulka et al., 201¥et, the MDIM can yield negative phytoplankton growth rate Kimmance and Brussaard, 2010
rates of viral lysisHasulka et al., 20)%and there are concerns whilst the slope of the modi ed dilution curve is the sum of
about the ability to detect viral impact e.g., due to previoushboth grazing and lysis rate&immance and Brussaard, 2010
infected cells, the length of latent period, and the speci ctyHence, the di erence in slopes between the classical and mddi e
of viral infection Jacquet et al., 2005; Kimmance et al., 200dilution curves is expected to be the viral lysis rate.
Kimmance and Brussaard, 2010; Pasulka et al.,)20iéspective
of the system, the core inference approach underlying the MDiM2.2. Virus Dilution Method
assumes that the community includes a single, dominant hodVe propose an alternative conceptual approach to estimating
and viral population. Whilst this has not prevented the MDiM rates of viral-induced lysis of phytoplankton. The VDiM is
from being applied in natural ecosystems, whose diversity isomprised of one dilution series. Thvrus dilution seriedilutes
a subject of ongoing analysis at multiple scalEse(rickson the ambient levels of viruses (but not phytoplankton or grazer
et al., 2011; Menden-Deuer and Rowlett, 2014; Aylward et aEach incubation experiment within the viral dilution series
2017; Needham et al., 20Q+#the implicit assumption of trait contains a proportionF of sampled seawater and a proportion
heterogeneity may limit the performance of the MDiM within (1  F) of seawater from which free viruses are removed. By
diverse environments. plotting the apparent growth rates of phytoplankton against
In this manuscript, we evaluate the potential for the modi ed the dilution level E) a viral dilution curve can be drawn.
dilution method to infer viral lysis in complex multi-strain Because only the concentration of viruses changes acress th
communities. In doing so, we develop nonlinear dynamic nisde virus dilution series, that the slope of the viral dilutionree
of virus-host interactions taking place in diluted media. Inrepresents an alternative approach to infer viral lysis rates. W
doing so, we also propose an alternative conceptual approadiecognize that practical implementation of this method may be
a virus dilution method (VDiM) which dilutes only viruses, bu challenging and we return to this in section 4. However, we ca
not microbes. We nd that the VDIiM may reduce estimation directly apply and assess the viral dilution methodolaggilico
bias compared to the MDiM, particularly given multi-strain as a means to test the potential accuracy and associated biase
scenarios. In doing so, we provide a theoretical framework tthe approach.
connect empirical measurements with the nonlinear feedback - o .
and interactions we are trying to infer. We hope that improved2.3. In silico Dilution Experiments
estimates of viral lysis rates will deepen understandingefole  In silico dilution experiments were used to estimate
of viruses in shaping community structure and biogeocheinicaviral lysis and compare it against the model input

uxes (Brussaard et al., 2008; Weitz et al., 2015; Mateus)2017 viral lysis rate. Ten dilution levels were used ( D
0.1, 0.2,0.3,0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) in eachasionul

2 MATERIALS AND METHODS series. Apparent growth rates, are calculated as:

2.1. Modi ed Dilution Method eD Liog P )

The modied dilution method Evans et al., 20Q3utilizes T g P(0)

two dilution series: theclassical dilution serieshich dilutes

phytoplankton and grazers (but not viruses) and tmedi ed where T is the length of incubation andP(0) and P(T) are

dilution seriesvhich dilutes phytoplankton, grazers and viruses. countable phytoplankton cell densities at the beginning (time 0
To determine rates of viral induced lysis using the modi edand end of the incubation period (tim&), respectively. Slopes

dilution method two parallel dilution series are createdand intercepts of the respective dilution curves are estithate

(Figure 1A). Two diluents are created using di erent lter sizes; using linear regression. Grazing rate is estimated as tpe sf

the classic Iter which excludes phytoplankton and grazessifa  the classical dilution curve and the viral lysis rate is eatad

the classical dilution method_éndry and Hassett, 1992and by (a) the di erence in slopes between the modi ed and classical

another Iter small enough to exclude viruses, phytoplanktondilution curves and (b) the slope of the viral dilution curve.

and grazers. Typical lter sizes used to achieve these purposBis is calculated by dividing the estimated viral lysis Iate

are 0.1 m and 30 kDa, respectivelyi{ai et al., 2013; Pasulka the model input viral lysis rate. Ambient concentrations of

et al.,, 201p Each dilution series contains several incubatiorphytoplankton and viruses are assumed to be at steady-state.

experiments which comprise a di erent proportidhof sampled Population dynamics are simulated using package deSolve v1.20

seawater and (1 F) diluent. Each incubation typically lasts (Soetaert et al., 20).CAll code is available at https://github.com/
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FIGURE 1 | Schematic representing the modi ed dilution method.(A) Scheme to generate the classical dilution series (top), by ixing WSW with a diluent that lters
out phytoplankton and grazers; and the modi ed dilution segs (bottom) by mixing WSW with a diluent that Iters out viruse (V), phytoplankton (P) and grazers (G).
(B) A diagram showing growth and mortality processes of phytoglnkton P. (C) Idealized apparent growth curves from the classical and modid dilution series. Viral
lysis rates are estimated based on the differences betweenlspes of the classic and modi ed dilution curves.

sjbeckett/DilutionMethod-ViralLysisEstimation and iscaived where we assume that the population of grazers stays constant

at (Beckett and Weitz, 20)8 within the time-scales of the dilution experiment (i.%—? DO
and G D Gp ). Here phytoplankton grow logistically with an

2.4. Non-linear Dynamics of Virus-Host intrinsic maximal growth rate’ up to a carrying capaciti, are

Interactions in the Bottle ingested by grazers at raend infected by viruses at rate We

2 4.1. Baseline Model assume, for now, that viral induced lysis is instantaneoaating

The densities of phytoplankton, grazers, and viruses ar@ burst size, , of viral progeny and that infective virions become
represented aB, G and V, respectively. We can represent pulkinactive atraté . The baseline model, described by Equation (2),

population dynamics of these groups ($&égure 1B) as: has an initial viral-induced lysis rate given by:
MgD Vo 3)
Iogistﬁ growth e )
Z— | —— i grazing indi . : .
4P P zﬁ? z?ﬂ where_Vo indicates the viral concentration at the time of
—DrP 1 — PV  aPG sampling.
dt K 2)

Virion oroduction  adsorofion et 2.4.2. Extension 1: Considering Infection Dynamics
dv z_’i| — z}|?{[ 'nafﬁl{at'on In the baseline model described in Equation (2) viruses
Gt PV PV v instantaneously lyse cells upon infection and there is nerfat
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period. Here, we introduce an infected cell state, denoted Bssume that the experimenter can tell the di erence between th
which represents infected cells that can produce viral progenywo phytoplankton typed?; and P, and is able to count them
We assume that grazers are unable to dierentiate betweeseparately. In this case the individual rates of viral-inelitysis,
susceptible and infected cells, which are grazed upon at equdh andMo, are found respectively as:

rates. The dynamics of this system are given as:

M1 D V1.0
logistjc growth Ms>D 5V,.0/ (7)
Z_Lﬁ { inf Tti?ns gzr?ﬂng 2 2vz.

dpP PCI :
pr DrP 1 — PV aPG whereV1 .0/ andV, .0/ are the concentrations of each virus type

_ . ‘ at sampling time. On the other hand, if the experimenter is ueabl
dl “e"{}'rf_fmed gzr?ﬂr‘g zli(ﬂs (4) to identify dierences between the phytoplankton types and
— D PV alG | counts them together, then the community wide bulk averaged
dt N ) rate of viral lysisMc, with this model at sampling time is:
dV V|r|on2[11{oduct|0n adzsﬂl’l?[tion inaé:ﬂ/ftion

\ V1(0) P1(0)C 2V2(0) P2(0

ED O] PV Y] Mc D 1V1(0) P1(0) 2V2(0) 2(). ®)

P1(0) C P2(0)

where we set We choose to evaluate the perfomance of both community

op wide and individual viral lysis rate estimates. As before we
CaG assume that sampled concentrations are taken at the steady

o L ) ) state for the system described in Equation (6) given in
so that the average burst size in the explicit infection masel Supplementary Data A

equal to that in the baseline modétfeitz, 201%. In the previous
model phytoplankton cells were directly lysed. Here, it isyonl

the phytoplankton cells in the infected class which lyse. Ahisu 3. RESULTS

the rate of viral-induced lysis in the sampié;, that we wish 3.1, Analytical Expressions for Dilution
to estimate is found as the rate of lysis from infected cedls aGrowth Rates

a proportion of the total cell concentration (both infecteddan
sucseptible cells):

The dierence in slopes between the classical and modied
dilution curves is expected to be the viral lysis rate. We catkh
lo this expectation using the proposed dynamical model (Equation
M; D Po C Io ®) 2). By calculating the instantaneous per capita phytoplankton
growth rates for each incubation experiment at a particular
wherelp and Py denote the sampled concentrations of infecteddilution levelF we nd analytical forms for each of the respective

and susceptible cells. dilution series:
i : i i i lassic It
2.4.3. Extension 2: Effects of Strain Level I.D|ver5|ty. caSﬂC er intercept Sﬁpe {
We extend the baseline model presented in Equation (2) to 1 dP z_ﬂ —{ rPo
include viral and phytoplankton strain diversity as: = — Dr Vo —Ca&x F (9
dpP; P1C P,
ot DrnbP 1 K 1PlV1 o &Py G modi id lter 81 pe
P, PLCP, T {
o DroPp 1 K 2P2Vo PG Sl D 7t Mo e VoCaG F (10)
av (6) P dt e, Fe,Fyo K
1 i .
o D 1 1PV 1PV 1'iVg where Py, Gg and Vg are the initial sampled densities of
adv. phytoplankton, grazers and viruses. The viral induced lysis
d—tz D 5 o2PV> 2Py  15V) rate . Vo/ in the sample can be calculated as the dierence

between the slope values (or equivalently the interceptshef t
where both phytoplankton populations are limited by the WO dilution curves Kimmance and Brussaard, 2Q1We also
same environmental conditions. For simplicity we assume theconsider an alternative approach—the VDiM-in which only

phytoplankton di er in growth rate, and that viruses only di er Viruses are diluted. Following the viral dilution approacmeo
in their ability to adsorb to their respective hosts. Therefave ~Can also estimate viral lysis as the slope from the correspgndi

assume both viruses have the same burst sigeD , D dilution curve:

, and inactivation rates}!1 D !, D !. We also assume virus only lter im? cept
that grazer clearance rates are the same regardless of prey type Z 1 Z [ { _slop
. - 1dp Po Zjl -
(aa D a D a). The range of life-history traits evaluated are - Dr 1 0 aG . Vo/F. (11)
shown inTable 2 We consider this model in two ways. First, we P dt b co.Fvo K
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TABLE 1 | Life history trait ranges used in then silicodilution experiments used to create example and scanning pts.

Symbol Description Value/Range Units
P Denisty of susceptible phytoplankton cells Variable Cellsml 1
| Denisty of infected phytoplankton cells Variable Cellsml 1
\% Density of infectious viral particles Variable Virions ml 1
Go Density of grazers 1,000 Grazers ml 1
r Intrinsic per capita growth rate of phytoplankton 1 Day 1
K Carrying capacity of phytoplankton 2.2 107 (or scanned) Cells mit
Adsorption rate of viruses to phytoplankton 108 ml/(virionshour)
Burst size 50 Virions/cell
! Viral inactivation rate 0.48 Day 1
a Grazer ltering rate 2 10 6 (or scanned) ml/(grazersour)
TABLE 2 | Life history trait values used in the strain-leveénh silicodilution experiments.
Symbol Description Value/Range Units
P1 Denisty of phytoplankton type 1 cells Variable Cells mtt
Py Denisty of phytoplankton type 2 cells Variable Cells mit
Vi1 Density of infectious viral type 1 particles Variable Virieml 1
Vo Density of infectious viral type 2 particles Variable Virieml 1
Go Density of grazers 1000 Grazers ml 1
r Intrinsic per capita growth rate ofPq 0.1 10 Day 1
ry Intrinsic per capita growth rate ofP, 0.2 Day 1
K Carrying capacity of phytoplankton 2.2 107 Cells ml 1
1 Adsorption rate ofV; to Py 10 10 10 7 ml/(virionshour)
2 Adsorption rate ofV, to P, 10 10 ml/(virionshour)
Burst size 50 Virions/cell
! Viral inactivation rate 0.48 Day 1
a Grazer ltering rate 48 10 S ml/(grazersday)

Phytoplankton type 1 and virus type 1's traits are varied within the giverange, whilst phytoplankton type 2 and virus type 2's traits are kept xed.

This suggests the viral dilution approach could be used as anay appear to be straightforward predictions di cult to anaé/s
alternative or complementary step in estimating viral lysites.  In the second model extension, where diversity is examined,
Given these analytical expressions, we would expect the MDiMere able to derive analytical expressions for the dilutioves.
and the VDIM to perform well in theinstantaneoudimit. But  The case in which the experimenter can distinguish between
inferences based on instantaneous growth rate measursmemhytoplankton types is trivially similar to that given for the
may not correspond well to growth rates based on measurementaseline model. In the case in which the experimenter cannot
collected after a 24 h incubation, during which the populationdistinguish between phytoplankton types we nd theoretical
of viruses, in addition to cells, will deviate from their figl  expectations for the classic dilution series curve as:
values.

We attempted to derive analytical expressions for each of

the model extensions. For the model including an infectedsl clasﬁc Iter

(Equation 4) our analytical expressions were unable to ptedic 7I9 CP {
that we should recover viral lysis (s&aipplemental Data D). v
This is due to the fact that the expression for total phytoplamkt PLC P2 kg FR, FR VLV,
(susceptible and infected) per capita growth rates does not , int? cept i
explicitly depend on the concentration of viruses, rather thte 1 /

o . ) ) Pr.ri 1V CParp 2Val
of lysis is dependent on the concentration of infected ceéllsilst D

— . . P1C P2

we were unable to recover the rate of viral-induced lysis gisin |
analytical expressions, we do not use this as evidence agans 2 e
performance of dilution based approaches. Rather, this shows .r1P1a; C roPoag/ Gy riP1 C roPy E 12
that even limited changes to nonlinear responses can makée wha P,CP, K (12)
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and for the modi ed dilution series:

, modied lter
P,.CP
P1C P, F&,FP1, FP, FVy, FVo

T

{

riP1 C roPs
P1C P>
z e {
r1Pia; CroPoad GgC 1V1P1C 2VoPo c riP1 CroPs =
PLCP, K
13)

The di erence in both the intercepts and the slopes of theseseri
(Equations 12, 13) is equal to the bulk-average rate of lyisi
in the community:

. 1V1/ P1C. 2Vo/ P>
PLCP

(14)
as previously de ned in Equation (8). Similarly for the VDiMew
nd:

virus {)nly Iter

J

Z

P.CP

PLC P2 o py, Py Fvi, PV

{

int? cept
a1Go/ C Pa.rp  apGol
P, CP,
o
. 1V1/ Plt . 2Vl Py )
PLCP,

{
riP1 C roPs
K

Z
P1.rq

D

Z

(15)

where the slope is predicted to estimate the bulk-averageofate
viral lysis for the community, as de ned in Equation (8). Agch,
the expectation is that we should be able to infer rates of kisés

at both the type- and community-level for the system desdibe

in Equation (6).

Whilst these analytical expressions match our expectationtg'

under instantaneous measurement, the ability to which they
able to do so may dier depending on the life-history traits
exhibited in the microbial community. Whilst growth increas

the phytoplankton population, this can be limited through niche

100

8 2 .8 =
% niche competition

% grazing

N
(=]

% viral lysis

FIGURE 2 | Schematic representing mortality processes affecting the
phytoplankton. The sum of three mortality processes: gramg, viral-induced
lysis, and niche competition must add to 100%. Grazing and lsis are
indicated on the axes, whilst niche competition is indicaté by shading. 5, 50,

and 95% isoclines of niche competition are labeled.

incubation of the population dynamics described in Equation
(2) using parameters ifiable 1 Figure 3Ashows the population
dynamics of phytoplankton cells and viruses from time O to 24
h (as indicated by arrows) within individual incubation hilets

in each of the three types of dilution series. This phase partrai
shows that the dynamical trajectories of viruses and celés di
across incubation bottles, but also that they oscillate adotihe
systems xed point - in our simulations the sampled density
of viruses and cells. Apparent growth rates were calculated
for each incubation bottle in each of the classic, modi ed
and viral dilution series using Equation (1) and are plotted i
Figure 3Bwith the best tting linear regression. All three dilution
curves appear to be linear. Using the intercept and slope values
calculated from the dilution curves as de ned by the CDiM,
MDiM, and VDIiM protocols we compare inferred ecological
rates to model input rates irFigure 3C Note that only the
MDiM provides estimates of all rates simultaneously; and that
e CDiM and MDIM estimate grazing the same way and are
therefore equal. For this set of parameters the CDiM appears
to underestimate growth rates, whilst grazing rates appear to be
overestimated. Both the MDiM and the VDiM infer high rates
of viral lysis. However, the MDiM underestimates the viraigy

competition and by the top-down controls of grazing and viral rate. The mechanistic basis for these biases in estimatgsisf

lysis. At steady state these limitation processes are equal
growth (Figure 2). The ability to estimate viral lysis rates might
depend on which of these limitation mechanisms is dominan
We now usein silicodilution experiments to test and evaluate
these expectations.

3.2. Evidence of Potential Bias in Lysis
Rate Estimates

rates can be understood in terms of the nonlinear dynamies th
arise in 24 h (se€igure 3A) vs. those expected given the theory

+of instantaneous lysis. The signal of these nonlinear dyosuis

not apparent from analysis of the dilution curves.

3.3. Robustness of Lysis Rate Estimates to

Variation in Life History Traits
To explore the robustness of viral-induced lysis rate esiionat

Figure 3shows the rate estimates for growth, grazing, and viralve examined di erent parameter regimes using two approaches.

lysis made by the CDiM, MDiM, and VDIiM following a 24 h

In the rst, we changed the relative amounts of bottom-up to
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F=0, Classic dilution

3e+06 4e+06
I

Viruses ml'*
2e+06
I
s,
gy

///

0e+00
I

T T T T T
0 20000 40000 60000 80000

Cells mi'*

B C

24h incubation

=== Classical dilution
— == Modified dilution
Viral dilution

15

A B Model input B Modified dilution
B Classical dilution B Viral dilution

Apparent growth rate (d'*)
1.0

Rates (per day)

0.5

Q )
2 >
T T T T T T o L
S

0.0 0.2 04 0.6 0.8 1.0

Proportion of WSW (F) Growth Grazing Lysis
FIGURE 3 | Inference of ecological rates using dilution methodgA) Population dynamics of phytoplankton cells and viruses wliin individual incubation bottles from
the classical, modi ed and virus dilution series between 0 ad 24 h. The intital sampled concentrations of cells and viriess D 1) are shown as the single point(B)
Dilution curves constructed from calculations of apparengrowth rates within each of the incubation bottles at 24 h(C) Comparing model rate inputs to
dilution-based rate estimates of growth, grazing, and vilanduced lysis derived from the dilution curves.

top-down mortality, as well as the ratio between viral-inddice  In order to further address the robustness of the two
and grazing mortality (consistent with the indicated isoels of inference methods to dierences in life-history traits and
niche competition inFigure 2, details inSupplementary DataB  model parameterization we used a Latin Hypercube sampling
which are shown using 24 h incubations igure 4 This design to assess estimation ability from an ensemble of
indicates that both the MDiIM and the VDIiM performed better model simulations which were assessed using short (2 h) and
when bottom-up mortality i.e., niche competition is low. Thelong (24 h) incubations. The parameter ranges are shown
VDiM performed best when niche competition was low, butin Table 3 These results suggest shorter incubations may
the MDiM provided better estimation when niche competition improve estimation of viral-induced lysis and that the VDIM
was high. The relative amount of top-down mortality partitieesh  is potentially more robust across systems with di erent life-
between viral lysis and grazer did not appear to change thleistory traits Figure 6). However, we note that there was
estimation bias associated with the di erent methods. a large variation in the e cacy of both methods and that
The analytical results suggest that both the modi ed andlir the VDIM could erroneously report a negative lysis rate
dilution methods should work well under near-instantansou estimate.
measurement. Hence, we repeated this procedure using a shorte . .
incubation period to see its e ect on viral lysis estimation.3-4. Robustness of Lysis Rate Estimates
Figure 5 shows that using a 2 h incubation period dramaticallyGiven Variation in Viral Latent Periods
improves estimation ability across all conditions. Agaire see The results from the baseline modeFigures 3-6) suggest
that the VDIM appears to provide better estimates than thdahat viral-induced lysis rate estimation may be improved by
MDiM when niche competition is low, but the reverse is trueusing shorter incubations and, in some instances, the viral
when niche competition is high. dilution method. However, the baseline model assumes tinak v
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TABLE 3 | Life history trait ranges used in then silicodilution experiments used to create density plots.

Symbol Description Value/Range Units

P Denisty of susceptible phytoplankton cells Variable Celiml 1

| Denisty of infected phytoplankton cells Variable Cells mt

\% Density of infectious viral particles Variable Virions ml 1

Go Density of grazers 1,000 Grazers ml 1

r Intrinsic per capita growth rate of phytoplankton 0.1 2 Day !

K Carrying capacity of phytoplankton 108 108 Cells ml 1
Adsorption rate of viruses to phytoplankton 1010 10 7 ml/(virionshour)
Burst size 10 100 Virions/cell
Infected lysis rate (inverse latent period) Day 1

! Viral inactivation rate 02 5 Day !

a Grazer ltering rate 107 10 4 ml/(grazershour)

Parameter choices were made from these ranges using a random latinypercube sampling design.

adsorption leads to instantaneous cellular lysis and releds min, 4 and 24 h. A similar analysis to that Figures 4 5, using
new infectious virions. Using the extended model that inlda  the extended model, is shown 8upplementary Data C,E,ia
infected phytoplankton (Equation 4) we ask whether the latenFigures S:Sa

period duration a ects inference of viral lysis rates. We ahos  The results from a system with a short 15 min latent period
to examine this model using three di erent latent periods: 15(Figure 7A and Figures S1 S4 are qualitatively similar to the
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baseline model. However, the e cacy of both the MDiM and the within dilution method experiments. To highlight this poteat
VDiM is reduced relative to that found under the assumptionse ect we consider a community with two phytoplankton types P1
of the baseline model—this is particularly apparent in compgrin and P2, which are each infected by a strain-speci c virus, . an
the estimation bias under a short incubatiofiure Slrelative V2. We further assume that P1 has a faster growth rate relativ
to Figure 5. This can be seen rstly by the drop in observedto P2, but has a lower ambient steady-state concentration, as
variation of estimation bias following a 2 h incubation for a shown in Figure 8 This is an expectation of Kill-the-Winner

4 h latent period Figure 7B and Figure S3 and a 24 h latent dynamics in which faster growing phytoplankton are capable
period (Figure 7Cand Figure S3. Additionally, as can be seen of supporting a larger virus population via negative density-
in Figures 7B,Cwhen the latent period exceeds the incubationdependent selection Thingstad, 2000; Zhao et al., 2013
period, the estimates from both the MDiM and the VVDiM are not Following the dilution of populations (time 0 h) type P1 is
only low, but also quantitatively similar. During 24 h incafons  able to recover much faster than type P2. If the observer is
the VDiIM appears more robust than the MDiMgigures 7B,G  unable to distinguish between these two phytoplankton types

but both methods had large variation in estimation bias. a dierent dynamic is apparent and may lead to misleading
. . . interpretations of viral-lysis in the community. Ifrigure 8B

3.5. Strain Level Diversity May Effect the the model input rates of viral-lysis and the corresponding

Ability to Estimate Viral-Induced Lysis estimates of viral-induced lysis are shown at the level of the

Life-history trait di erences between the members of inttlag community and at type-level. Here, viral-induced lysis was
microbial communities could lead to biased measurementsnderestimated at the type levels for both phytoplankton.
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However, the community viral-induced lysis rate wasthe rate of viral lysis when analysing the case of viral dilut
overestimated. (Equation 11), under the knowledge that this analysis regmes
To explore the ability of the modied and viral dilution instantaneous expectations, and not those after a long iatboib
methods to robustly estimate viral-induced lysis rates irmperiod. However, oum silicosimulations suggest viral lysis rate
phytoplankton communities we xed the life-history traits of may be di cult to measure in practice.
phytoplankton type P2 whilst varying the ambient concentratio ~ Our simulation results suggest that estimation ability of
and growth rates of phytoplankton P1. The results are showniral-lysis rates is poorer under increased bottom-up cohtro
following a 2 h incubation inFigure 9 and following a 24 h via niche competition. This complements previous research in
incubation in Figure 10 Similarly to the baseline model we which we found that niche competition might also reduce the
nd that estimation ability improves with shorter incubatio ability to estimate grazing rate8¢ckett and Weitz, 20).7This
periods, but we note that this model does not include an irddct suggests greater understanding of the nutrient and inciobat
class and lysis is instantaneous. Community estimatesral-vi conditions and how they relate to the physiology of plankton
induced lysis may be overestimated or underestimated ddpgnd communities in dilution experiments is necessary. Nutrient
on the life-history traits in the community. These e ects areaddition is commonly used to alleviate nutrient limitatiovithin
larger during 24 h incubations than 2 h incubations. Follogi dilution experiments. As highlighted bgalbet and Saiz (2017)
a 2 h incubation the 95% quantiles of estimation bias reportedi erent nutrient addition treatments are applied within di erg
in Figures 9 10 are (0.98, 1.34) for the MDIM and (1.00, 1.21)dilution experiments. As well as asking how nutrient addition
for VDiM; but following a 24 h incubation are (0.14,5.63) e ects niche competition, future consideration should be give
for MDIM and (0.14,1.69) for VDIM. The regimes in which to how particular organisms will di erentially respond to a
overestimation and underestimation occur are also dependeparticular nutrient addition strategylagus et al., 2004and
on observation timing. At the type-level (bottom two rows) how this aects the ability to learn abouin situ ecological
we see both the MDiIM and the VDiM generally underestimateprocesses.
viral-induced lysis rate across the variation in life-bist traits. We investigated two potential approaches to improve
estimates of viral-induced lysis rates—reducing incubation
length in the MDiIM and applying a new, VDiM in which only
4. DISCUSSION virus concentrations are diluted. Reducing incubation tigi
appeared to improve estimation ability under circumstances
We have systematically analyzed the potential for diluti@sed when the incubation length was greater than the infection
methods to infer viral lysis rates of phytoplankton. In doing s latent period. This suggesaspriori knowledge of latent periods
we have combined nonlinear models of community dynamicsould help improve experimental design—however sagriori
in a specic experimental context. We derived equations foknowledge may not be availalitesitu. Our simulations do not
expected dilution curves (Equations 9, 10) which provides aodel how ecological processes may be e ected by diel forcing
principled basis for why the di erence in these slopes may be.g.Arias et al., 201, Avhich could be an additional complicating
able to approximate viral lysis. We were also able to recovdactor in attempting to use dilution based approaches to
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estimate ecological rates of phytoplankton, grazers, ande see two possibilities. First, empiricists could attempt to

viruses. resuspend viruses e.g., using occulation techniquéshi}
The VDIM did appear to have improved e cacy relative et al., 2011; Poulos et al., 201& dierent approach to

to the MDiIM when populations were not limited by bottom- achieving a gradient of viral dilution could be to use the

up control. In order to practically implement the VDIiM Itrate (as opposed to the diluent) of the classical dilution
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Itered water and mixing this with whole seawater at di erent network of interactions between viruses, phytoplankton cells
proportions. and grazers will a ect both the observed population dynamics

Figure 3 represents a cautionary tale for the eld in the and the expected individual type- and community-level ratés o
interpretation of dilution experiments. Observations mad#ng  mortality. Investigating how well simple approximations, sush a
dilution experiments typically nd similar rates of phytoplatdn ~ those made by bulk-population models of the dilution method,
growth and grazing mortality (e.g.Morison and Menden- work in more complex ecological communities warrants further
Deuer, 2017 However, as shown iRigure 3it is important to  investigation.
remember the ecological context of such measurements—grow There are a number of additional assumptions that could
rate estimates made by the classical dilution method argdin prove limiting to the dilution method. Inherent in our
by the activity of viruses and hence may be underestimate@ssumptions are that life-history traits are constant and do
We caution empiricists to consider the role of viruses in figtu not vary in time or with changing environmental conditions
experiments. during the incubation time. Additionally we assume that grag

In addition to treating phytoplankton and viruses as bulk and viral infection processes are linearly a ected by dilaotio
entities, we investigated how well dilution based estimate(i.e., Holling type I) which may be a simplistic assumption.
perform when diversity is included at both type- and community Saturation in grazing responses ¢t al., 201, or viral infection
level. We found that fast growing strains have the potentia(Kimmance and Brussaard, 2Q1@ould lead to nonlinear
to recover quickly and therefore dominate the apparent lysislilution curves which need di erent methods of interpretatio
rate, even if they are relatively small contributors to theWithout observations of the population dynamics between
true signal. This level of virus-host interaction complexitythe beginning and end of the dilution experiments it may
remains over-simpli ed. Virus-host interactions are exptto  be dicult to assess the appropriateness of the conceptual
be highly specic (though some viruses have been observadechanistic framework from which dilution-based rate ssites
to infect across phylaMalki et al., 201)x Nonetheless, at are inferred. We assume that the Iters used by the classical,
the strain level there may exist a range of specialist tanodied and viral dilution series all perform perfectly which
generalist virus types\Weitz et al., 2013 In addition we may not be the case (e.g?asulka et al.,, 20)5and that
continue to treat grazers as a bulk entity, thou@hlbet and nutrient levels are not reduced by dilution (though deasulka
Saiz (2013)nd that trophic chains can aect the results of et al., 201) Additional challenges arise from consideration of
dilution experiments. Grazing is also assumed to be nonnutrient regeneration via viral lysis, lysogeny, the potdrfia
preferential which is an assumption that could be challengeg@referential grazing on infected cells, removal of free visuse
(Wirtz, 2014; Pasulka et al.,, 2015The structure of the by grazing Kimmance and Brussaard, 201land mixotrophy
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(Caron, 201k These could all serve as routes for futureto provide estimates of growth or grazing rates, and it has yet
study. to be demonstrated in practice. We also note that both methods
We have shown that even with perfect measurement abilityexhibited strong sensitivity to the length of incubatioatve to
large uncertainty exists in the ability of dilution basedthmeds the latent period. Shorter incubations improve estimatioiligh
to estimate rates of viral-induced lysis. These uncer@énére butthe ability to infer viral mediated mortality is severeéduced
related to mismatch between the expectation of exponentialhen the incubation length is shorter than the latent peridée
recovery from dilution for the bulk community and predicted suggest that both increasing the temporal sampling resaiutio
nonlinear dynamics and time-delayed feedbacks within compleand increasing our resolution of community membership and
microbial communities of viruses, grazers and their migabb individual virus-host linkages that exist within dilutiobased
prey. For the cases outlined in our manuscript, the VDiMexperiments will be an important future step in helping to
provides better estimation of viral induced lysis than the MDi  constrain estimates of growth, grazing, and viral-indudgsis
The strength of such an approach is that it only requires onesates. Improving estimates of viral e edtssitu requires that we
rather than two dilution series. However, the VDIM is unablerevisit the mechanistic assumptions of experimental proteaol
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light of the increasing understanding of the diversity ofnina
microbial and viral communities.
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