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Supplementary Text 1 – Operational definitions of viral and microbial abundances

The operational definitions “near-surface” and “sub-surface” are used to indicate predominantly euphotic and
aphotic ocean depths [1]. We use the term virus abundance throughout this manuscript to denote estimates derived
from culture-independent methods, including epiflourescence microscopy [2] or flow cytometry [3]. Viruses measured in
these methods are generally thought to represent bacteriophage, consistent with the numerical dominance of bacteria
in seawater [4]. Yet, currently available methods have potential limitations. For example, ssDNA viruses [5, 6], RNA
viruses [7, 8], and giant viruses [9] are under-counted when estimates are made via epiflourescence microscopy with
standard DNA based stains.
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Year Observation Reference

1894 Marine bacteria are first discussed by Certes, Fischer and Russell Certes [10], Fischer [11], Russell
[12], Fischer [13]

1915,1917 Bacteriophage are discovered Twort [14], d’Hérelle [15]

1925 The presence of bacteriophage in seawater is noted Arloing and Chavanne [16]

1946 ZoBell reports that bacteriophage occur only sporadically and in the
littoral zone and concludes there is insufficient evidence for viruses to
be considered as key to limiting open ocean bacteria

ZoBell [17], Carlucci and
Pramer [18]

1947 The presence of bacteriophage described in the oceans Kriss [19]

1979 Using transmission electronic microscopy, up to 104 ml−1 bacterio-
phage particles are observed in coastal water, an observations that
sparked the rebirth of virus ecology a decade later.

Torrella and Morita [20]

1989 “Rebirth” of virus ecology across a series off papers begins with a
report of virus and bacteria abundances for which VMRs range from
0.2 (Raunefjorden) to 50 (North Atlantic)

Bergh et al. [21]

1990 Report of virus particles ranging from 106 - 1011 per liter, infecting
up to 7% of heterotrophic bacteria and each infected cell containing
10-100 mature virions

Proctor and Fuhrman [22]

1991-1993 Estimates of virus abundance exceeding bacteria abundance by 5-10
fold from a series of papers (this observation noted in Fuhrman and
Suttle [23])

Hara et al. [24], Paul et al. [25],
Wommack et al. [26], Cochlan
et al. [27], Paul et al. [28]

1995 Maranger and Bird [29] survey 22 Quebec lakes and collect literature
from 14 studies [21, 24, 26–28, 30–35] and report VMR higher in fresh-
water (20-25) than marine systems (1-5).

Maranger and Bird [29]

2000 Wommack and Colwell suggest that VMR typically ranges between 3
and 10, and note that VMR decreases as microbial abundance increas-
es.

Wommack and Colwell [36]

2000 A VMR “roughly equal to 10” (attributed to Maranger and Bird [29] is
designated as a target for parameterizing the Kill-the-Winner theory
of virus-microbe interactions.

Thingstad [37]

2004 Consistency in VMR is attributed to the idea that most viruses are
phage that infect bacteria. Notes a VMR of 10 in marine systems and
attributes to Maranger and Bird [29].

Weinbauer [4]

2004 Chibani-Chennoufi and colleagues advance the notion that VMR is
10:1 in the ocean and that this is justified by the claim that each
bacterial species can be infected by 10 different phage.

Chibani-Chennoufi et al. [38]

2008 VMR ratios reviewed in several publications that collate information
from multiple studies, with a 10:1 consensus despite noted variation.

Clasen et al. [39], Wilhelm and
Matteson [40]

2011 VMR reviewed across several regimes, with evidence for a linear rela-
tionship between viruses and microbes in the water column and a
nonlinear relationship in sediment.

Danovaro et al. [41]

2014 The BioNumbers database, intended to facilitate quantitative analysis
in the biosciences, lists VMR as 10.

Milo et al. [42]

TABLE S1: Origins and emerging consensus of the 10:1 ratio of virus abundance to microbial cell abundance in aquatic systems
- from freshwater lakes to the global oceans.

3

Study ≤ 100m > 100m Total

ARCTICSBI 292 0 292

BATS 626 756 1382

BEDFORDBASIN 188 0 188

CASES03-04 199 46 245

ELA 85 0 85

FECYCLE1 31 0 31

FECYCLE2 15 0 15

GEOTRACES 141 631 772

GEOTRACES LEG3 78 351 429

GREENLAND2012 78 46 124

INDIANOCEAN2006 42 10 52

KH04 5 159 383 542

KH05 2 117 238 355

MOVE 84 0 84

NASB2005 31 0 31

NORTHSEA2001 164 27 191

POWOW 9 0 9

RAUNEFJORD2000 95 0 95

SOG 67 0 67

STRATIPHYT1 89 24 113

STRATIPHYT2 59 34 93

SWAT 31 0 31

TABASCO 12 0 12

TROUT 47 0 47

USC MO 182 204 386

Total 2921 2750 5671

TABLE S2: Number of data points per study.

≤ 100m >100m

Model R2 AIC R2 AIC

10:1 -0.16 -15305.83 -0.25 -14492.09

Power Law 0.15 -16301.81 0.64 -18313.82

Constrained Power Law 0.39 -17292.11 0.66 -18513.48

Power Law by Study 0.79 -20293.10 0.72 -18972.81

TABLE S3: Information theoretic comparison of alternative models of the relationship between virus and microbial cell abun-
dances. The values of the Aikake Information Criteria (AIC) are defined in the Materials and Materials and Methods. The
value of R2 for each model denotes the relative amount of variance explained. Negative values of R2 mean that a model explains
less variance than does the overall mean.
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Study Intercept Std. Error Group

ARCTICSBI 4.552594 0.1580157 A

FECYCLE1 4.552594 0.1837236 A

FECYCLE2 4.552594 0.1961546 A

MOVE 4.552594 0.1982541 A

Raunefjord 4.552594 0.1716625 A

StratiphytI 4.552594 0.1543207 A

USCMO 4.552594 0.1806831 A

KH05 2 4.513041 0.1683358 A

SOG 4.480697 0.1869220 A

POWOW 4.408948 0.2060002 B

StratiphytII 4.389658 0.1765001 B

KHO4 4.339907 0.1688285 B

CASES0304 4.339902 0.1669256 B

BEDFORDBASIN 4.336256 0.1825271 B

BATS 4.332784 0.1647363 B

ELA 4.332784 0.1885707 B

GEOTRACES 4.332784 0.1580225 B

GEOTRACES LEG3 4.332784 0.1679548 B

GREENLAND2012 4.332784 0.1759093 B

INDIANOCEAN2006 4.332784 0.1820002 B

NASB2005 4.332784 0.1876671 B

NORTHSEA2001 4.332784 0.1770218 B

SWAT 4.332784 0.1945882 B

TABASCO 4.332784 0.2047635 B

TROUT 4.332784 0.2019569 B

TABLE S4: Variation in the estimate of the intercept, α
(i)
0 , for each study and associated standard error for the constrained

power-law model as applied to surface ocean data. The common intercept in this model is α0 = 4.44 and the common slope is
0.42. The group column denotes whether the study-specific intercept exceeds that of the common intercept (denoted as group
A) or is below that of the common intercept (denoted as group B). The table is sorted according to the lab-specific intercept
estimates.

5

≤ 100 m > 100 m

Study R2 p-value R2 p-value

ARCTICSBI 0.441 <1e-05

BATS 0.045 <1e-05 0.504 <1e-05

BEDFORDBASIN 0.537 <1e-05

CASES03-04 0.541 <1e-055 0.072 0.0718

ELA 0.343 <1e-05

FECYCLE 0.146 0.0341

FECYCLE2 0.004 0.813

GEOTRACES 0.163 <1e-05 0.706 <1e-05

GEOTRACES LEG3 0.043 0.0695 0.396 <1e-05

GREENLAND2012 0.868 <1e-05 0.333 2.7e-05

INDIANOCEAN2006 0.068 0.0955 0.288 0.11

KH04 5 0.325 <1e-05 0.703 <1e-05

KH05 2 0.122 0.000112 0.836 <1e-05

MOVE 0.24 <1e-05

NASB2005 0.382 0.00021

NORTHSEA2001 0.542 <1e-05 0.51 2.85e-05

POWOW 0.136 0.329

RAUNEFJORD2000 0.349 <1e-05

SOG 0.788 <1e-05

STRATIPHYT1 0.448 <1e-05 0.471 0.000214

STRATIPHYT2 0.768 <1e-05 0.731 <1e-05

SWAT 0.026 0.389

TABASCO 0.371 0.0354

TROUT 0.687 <1e-05

USC MO 0.229 <1e-05 0.462 <1e-05

TABLE S5: Explanatory power and significance of power-law fits for the model in which the power-law exponent is allowed to
vary between studies. Empty cells in a row denote the absence of samples collected at depths > 100 m for the study denoted
in the left-most column.
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≤ 100 m > 100 m

Study α0 α1 α0 α1

ARCTICSBI 2.13 0.97

BATS 4.81 0.31 2.49 0.72

BEDFORDBASIN 1.32 0.91

CASES03-04 2.40 0.77 2.80 0.65

ELA 2.38 0.66

FECYCLE 1.29 1.05

FECYCLE2 5.36 0.38

GEOTRACES 4.40 0.41 3.63 0.52

GEOTRACES LEG3 4.09 0.45 3.43 0.53

GREENLAND2012 0.98 0.97 2.05 0.76

INDIANOCEAN2006 4.97 0.28 2.75 0.66

KH04 5 4.04 0.48 3.00 0.64

KH05 2 4.66 0.40 2.48 0.76

MOVE 5.06 0.45

NASB2005 1.80 0.69

NORTHSEA2001 0.74 1.00 1.59 0.84

POWOW 5.14 0.30

RAUNEFJORD2000 4.30 0.48

SOG -0.68 1.25

STRATIPHYT1 3.42 0.71 4.53 0.45

STRATIPHYT2 2.93 0.68 2.96 0.67

SWAT 6.36 0.11

TABASCO 3.73 0.49

TROUT 1.83 0.78

USC MO 4.37 0.49 2.18 0.79

TABLE S6: Power-law exponents, α1, and intercepts, α0, for each study from the mixed model allowing study-specific slopes
and intercepts. Empty cells in a row denote the absence of samples collected at depths > 100 m for the study denoted in the
left-most column.
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FIG. S1: Explanatory power of fixed VPR models in the surface ocean (left) and deeper water column (right). The x-axis
denotes the value r in the model V = rM where V denotes virus abundance and M denotes microbial abundance. The y-axis
denotes the fraction of variance explained, R2. Here, R2 = 1− SSEmodel/SSEtotal where SSEmodel is the sum of squared errors
for the model and SSEtotal is the sum of total squared errors.
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≤ 100 m > 100 m

Study α0 α1 α0 α1

ARCTICSBI 2.13 0.97

BATS 4.81 0.31 2.49 0.72

BEDFORDBASIN 1.32 0.91

CASES03-04 2.40 0.77 2.80 0.65

ELA 2.38 0.66

FECYCLE 1.29 1.05

FECYCLE2 5.36 0.38

GEOTRACES 4.40 0.41 3.63 0.52

GEOTRACES LEG3 4.09 0.45 3.43 0.53

GREENLAND2012 0.98 0.97 2.05 0.76

INDIANOCEAN2006 4.97 0.28 2.75 0.66

KH04 5 4.04 0.48 3.00 0.64

KH05 2 4.66 0.40 2.48 0.76

MOVE 5.06 0.45

NASB2005 1.80 0.69

NORTHSEA2001 0.74 1.00 1.59 0.84

POWOW 5.14 0.30

RAUNEFJORD2000 4.30 0.48

SOG -0.68 1.25

STRATIPHYT1 3.42 0.71 4.53 0.45

STRATIPHYT2 2.93 0.68 2.96 0.67

SWAT 6.36 0.11

TABASCO 3.73 0.49

TROUT 1.83 0.78

USC MO 4.37 0.49 2.18 0.79

TABLE S6: Power-law exponents, α1, and intercepts, α0, for each study from the mixed model allowing study-specific slopes
and intercepts. Empty cells in a row denote the absence of samples collected at depths > 100 m for the study denoted in the
left-most column.
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FIG. S1: Explanatory power of fixed VPR models in the surface ocean (left) and deeper water column (right). The x-axis
denotes the value r in the model V = rM where V denotes virus abundance and M denotes microbial abundance. The y-axis
denotes the fraction of variance explained, R2. Here, R2 = 1− SSEmodel/SSEtotal where SSEmodel is the sum of squared errors
for the model and SSEtotal is the sum of total squared errors.
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FIG. S2: Explanatory power of fixed VPR models in the near-surface and sub-surface with and without outliers. The three
lines in each panel denote the 10:1 line (black), power-law fit (red) and power-law fit when removing outliers (green). The R2

value for the power law fit for surface data excluding outliers is 0.30, has a slope of 0.58 and an intercept of 3.50. The R2 value
for the power law fit for sub-surface data excluding outliers is 0.65, has a slope of 0.54 and an intercept of 3.49.
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FIG. S3: Variation in estimated power-law exponent as a function of sampling depth cutoff, over the range 50m to 150m. In
all cases power-law exponents were measured on log transformed data (see Materials and Methods). The slope varies from
0.40− 0.47 for near-surface samples, as compared to the CI of 0.39− 0.46 when using 100m cutoffs, i.e., nearly coinciding with
the original uncertainty in the estimated slope. The slope varies from 0.47− 0.57 for sub-surface samples, as compared to the
CI of 0.52− 0.55 when using 100m cutoffs. This represents an approximately 10% change in slope estimate. The trend in slope
with changes in cutoff depth reflects the difference between near- and sub-surface scaling relationships which are shallower and
steeper, respectively. Irrespective of cutoff, we conclude that power-law exponents are sublinear, close to that when estimated
using a 100m cutoff.
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FIG. S2: Explanatory power of fixed VPR models in the near-surface and sub-surface with and without outliers. The three
lines in each panel denote the 10:1 line (black), power-law fit (red) and power-law fit when removing outliers (green). The R2

value for the power law fit for surface data excluding outliers is 0.30, has a slope of 0.58 and an intercept of 3.50. The R2 value
for the power law fit for sub-surface data excluding outliers is 0.65, has a slope of 0.54 and an intercept of 3.49.
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FIG. S3: Variation in estimated power-law exponent as a function of sampling depth cutoff, over the range 50m to 150m. In
all cases power-law exponents were measured on log transformed data (see Materials and Methods). The slope varies from
0.40− 0.47 for near-surface samples, as compared to the CI of 0.39− 0.46 when using 100m cutoffs, i.e., nearly coinciding with
the original uncertainty in the estimated slope. The slope varies from 0.47− 0.57 for sub-surface samples, as compared to the
CI of 0.52− 0.55 when using 100m cutoffs. This represents an approximately 10% change in slope estimate. The trend in slope
with changes in cutoff depth reflects the difference between near- and sub-surface scaling relationships which are shallower and
steeper, respectively. Irrespective of cutoff, we conclude that power-law exponents are sublinear, close to that when estimated
using a 100m cutoff.
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FIG. S4: Constrained regression model for samples taken at depths ≤ 100m (left) and > 100m (right) where the intercept for
each study was permitted to vary (see Materials and Methods). Blue line denotes the 10:1 relationships, the red line denotes
the best-fitting power-law model, and the remainder of lines denote the variable intercept model with intercept values reported
in Table S4.
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exponents and associated confidence intervals are shown in Figure S6,
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einiger älterer und neuerer Untersuchungen. Lipsius & Tischer, Keil, 1894.
14 T.W. Twort. An investigation on the nature of ultra-microscopic viruses. Lancet, 2:1241–1243, 1915.
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