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Membrane vesicles in sea water: heterogeneous
DNA content and implications for viral abundance
estimates
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Diverse microbes release membrane-bound extracellular vesicles from their outer surfaces into the
surrounding environment. Vesicles are found in numerous habitats including the oceans, where they
likely have a variety of functional roles in microbial ecosystems. Extracellular vesicles are known to
contain a range of biomolecules including DNA, but the frequency with which DNA is packaged in
vesicles is unknown. Here, we examine the quantity and distribution of DNA associated with vesicles
released from five different bacteria. The average quantity of double-stranded DNA and size
distribution of DNA fragments released within vesicles varies among different taxa. Although some
vesicles contain sufficient DNA to be visible following staining with the SYBR fluorescent DNA dyes
typically used to enumerate viruses, this represents only a small proportion (o0.01–1%) of vesicles.
Thus DNA is packaged heterogeneously within vesicle populations, and it appears that vesicles are
likely to be a minor component of SYBR-visible particles in natural sea water compared with viruses.
Consistent with this hypothesis, chloroform treatment of coastal and offshore seawater samples
reveals that vesicles increase epifluorescence-based particle (viral) counts by less than an order of
magnitude and their impact is variable in space and time.
The ISME Journal advance online publication, 8 November 2016; doi:10.1038/ismej.2016.134

Introduction

Cells from all domains of life release extracellular
vesicles (Deatherage and Cookson, 2012). These
small, spherical, lipid membrane-bound structures
typically range in size from ~20 to 200 nm diameter
and provide a means for cells to interact with their
environment over both spatial and temporal scales
(Brown et al., 2015; Schwechheimer and Kuehn,
2015; Toyofuku et al., 2015). Vesicle release has been
observed in a variety of cultured marine bacteria,
ranging from the globally abundant cyanobacterium
Prochlorococcus (Biller et al., 2014) to cold-adapted
heterotrophic bacteria from the Antarctic (Frias
et al., 2010), suggesting a role for vesicles in the
ecology of marine microbial ecosystems. Field
studies have confirmed that extracellular vesicles
are produced by a diverse range of microbes in the
marine environment, and they have been found at

concentrations of at least 105 vesicles ml� 1 in
oligotrophic surface waters (Biller et al., 2014).

In Gram-negative bacteria, extracellular vesicles
are derived from the outer membrane of the cell.
Typically, vesicle formation is thought to begin
when a region of the outer membrane separates from
the peptidoglycan layer and begins to form a curved
region protruding from the rest of the cell. This bulge
then continues to expand until it eventually forms a
complete sphere and separates from the cell
(Schwechheimer and Kuehn, 2015). This ‘blebbing’
of the outer membrane may occur via one or more
possible mechanisms, including localized reduction
in membrane crosslinking, localized phospholipid or
lipopolysaccharide accumulation in the outer leaflet,
physical interactions among outer membrane com-
ponents, or increases in membrane curvature arising
from ionic interactions (McBroom et al., 2006;
Schertzer and Whiteley, 2012; Rath et al., 2013;
Schwechheimer et al., 2015; Roier et al., 2016).
Bacteria appear to release vesicles constitutively,
though stress conditions and other environmental
factors can influence release rates (MacDonald and
Kuehn, 2013). Bacteria growing in biofilms or under
stress can also form membrane vesicles as a
consequence of cell lysis, where fragments of broken
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membranes re-anneal into spherical vesicles (Turnbull
et al., 2016).

Vesicles are thought to have roles in a variety
of biological processes including intercellular com-
munication and exchange, pathogenesis, nutrient
acquisition, biofilm formation and cellular defense
(Ellis and Kuehn, 2010; Manning and Kuehn, 2011;
MacDonald and Kuehn, 2012; Brown et al., 2015;
Schwechheimer and Kuehn, 2015). These diverse
capabilities are a consequence of the fact that
vesicles are a versatile secretion mechanism that
provides cells with a means to move both hydro-
phobic and hydrophilic molecules through the
extracellular milieu. Vesicles are comprised of
lipids, proteins and other biomolecules; consistent
with their mechanism of release, vesicles from Gram-
negative bacteria largely contain outer membrane
and periplasmic material, although cytoplasmic
components are observed as well. Vesicles do not
simply mimic cellular contents but can be specifi-
cally enriched or depleted in individual components
(Bonnington and Kuehn, 2014).

Perhaps one of the most striking features of extra-
cellular vesicles is that they can contain nucleic acids
(Dorward et al., 1989; Valadi et al., 2007; Rumbo et al.,
2011; Biller et al., 2014). DNA fragments of diverse
sizes, ranging from hundreds of bp to 420 kb have
been reported in vesicles from Gram-negative bacteria,
Gram-positive bacteria, archaea and eukaryotes, and
include genomic, plasmid and viral DNA (Dorward
and Garon, 1990; Klieve et al., 2005; Soler et al., 2008;
Biller et al., 2014; Gaudin et al., 2014; Jiang et al., 2014;
Grande et al., 2015; Yáñez-Mó et al., 2015). As such,
vesicles can function as vehicles of horizontal gene
exchange (Yaron et al., 2000; Renelli et al., 2004;
Klieve et al., 2005). Shotgun sequencing of vesicle-
associated DNA from ocean samples has revealed
sequences from diverse bacteria, archaea and eukar-
yotes (Biller et al., 2014), suggesting that vesicles could
be an important mechanism mediating gene transfer
among marine microbes.

The observation that DNA can be found within
vesicles has also raised practical concerns concern-
ing the standard methods used by viral ecologists to
measure viral abundance (Forterre et al., 2013; Soler
et al., 2015). It has been suggested that membrane
vesicles in natural samples may call into question
viral abundance measurements (Soler et al., 2015),
which are typically based on application of a
fluorescent DNA-binding dye (often one of the SYBR
dyes) followed by enumeration using epifluores-
cence microscopy or flow cytometry (Patel et al.,
2007). As DNA-containing membrane vesicles are
indistinguishable from viruses using these methods,
the possibility exists that viral abundances may be
overestimated by the presence of membrane vesicles
(Soler et al., 2008, 2015; Forterre et al., 2013), although
the potential magnitude of this impact has been
questioned in the literature based on metagenomic
sequencing of oceanic viral communities (Brum and
Sullivan, 2015).

In this work, we quantify the DNA content in
vesicles as well as the frequency of DNA occurrence
in vesicle populations. By characterizing vesicles
from a variety of marine bacteria, we addressed the
following basic questions: Do all bacteria release
similar amounts of DNA within vesicles? Do they
release similarly-sized DNA fragments? Is DNA
distributed heterogeneously or homogeneously
among vesicles? Does vesicle DNA impact estimates
of viral concentrations in marine ecosystems?

Materials and methods

Culture conditions
Axenic cultures of Prochlorococcus strain MED4 were
grown under constant light flux (30–40μmolQm−2 s−1)
at 24 °C in Pro99 media (Moore et al., 2007) prepared
with 0.2 μm filtered, autoclaved sea water collected
from Vineyard Sound, MA. Twenty-liter cultures
were supplemented with 10mM (final concentration)
filter-sterilized sodium bicarbonate upon inoculation
and grown in polycarbonate carboys (ThermoFisher,
Waltham, MA, USA) with gentle stirring (60 rpm).
Myovirus P-HM2 (Sullivan et al., 2010) was prepared
from 0.2 μm filtered lysates of infected Prochloro-
coccus MED4, grown as above. Phage PM2 was
prepared according to the ATCC protocol (ATCC
27025-B1) using Pseudoalteromonas espejiana BAL
31 as the host. The marine heterotrophs used in this
work, Alteromonas strain MIT1002 (Biller et al.,
2015), Salinicola strain MIT1003 and Thalassospira
strain MIT1004, were all originally isolated from
Prochlorococcus enrichment cultures by streaking
onto ProMM plates (Pro99 media, as above, plus
lactate, pyruvate, glycerol, acetate and Va vitamins;
Berube et al., 2015) containing 1.5% Bacto Agar (BD
Difco, Franklin Lakes, NJ, USA). All strains are
available upon request. Heterotroph cultures were
grown in 2–10 l of ProMM medium at 24 °C.
Escherichia coli strain ZK126 was grown in M9
media with shaking at 37 °C.

Vesicle purification
Vesicles were purified and quantified as in Biller
et al. (2014). Briefly, exponentially growing cultures
were first gravity filtered through a 0.2 μm capsule
filter (Polycap 150TC; GE Whatman, Buckingham-
shire, UK). The filtrate was then concentrated using a
100 kDa Ultrasette tangential flow filter (Pall, Port
Washington, NY, USA), re-filtered through a 0.2 μm
syringe filter and vesicles pelleted by ultracentrifu-
gation at ~ 100 000 g (SW32Ti rotor; 32 000 rpm,
1.5 h, 4 °C; Beckman Coulter, Brea, CA, USA). The
vesicle pellet was next resuspended in 0.5ml of 45%
Optiprep (Iodixanol; Sigma-Aldrich, St Louis, MO,
USA) in a buffer containing 3.6% (w/v) NaCl and
10mM HEPES, pH 8. This was placed in the bottom
of a 4ml UltraClear ultracentrifuge tube (Beckman
Coulter) and overlaid with equal volumes of 40%,
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35%, 30%, 25%, 20%, 15%, 10% and 0% Optiprep (in
the same buffer background). The gradient was cen-
trifuged at 100 000 g (32 000 rpm) for 6 h at 4 °C in a
SW60Ti rotor (Beckman Coulter). The top 1.5ml of
gradient sample was discarded, and the next ~1.5ml in
the middle of the gradient saved. To recover vesicles,
the sample was diluted at least five-fold with buffer
(0.2μm filtered 1× phosphate-buffered saline (PBS))
and pelleted in an ultracentrifuge (~100 000 g, 1 h, 4 °C,
SW60Ti rotor). The sample was washed with fresh PBS,
pelleted again as above, and then resuspended in 0.02-
μm filtered 1× PBS. Electron microscopy (negative
staining with 2% uranyl acetate) was used to confirm
the contents of the vesicle samples.

Vesicle quantitation
Vesicle size distributions and concentrations were
measured using a NanoSight LM10HS instrument
equipped with the LM14 blue laser module and NTA
software V3.1 (NanoSight/Malvern, Malvern, UK).
Samples were diluted such that the average number
of particles per field was between 20 and 60, per the
manufacturer’s guidelines. Three replicate videos
were collected from each sample (by pushing
additional sample through the chamber in order to
acquire a different field) at a camera level of 9–10,
and analyzed at a detection threshold of 1. The sample
chamber was thoroughly flushed with 18.2MΩ cm−1

water (Milli-Q; Millipore, Billerica, MA, USA) between
samples, and visually examined to ensure that no
particles were carried over.

Vesicle-associated DNA purification and analysis
To eliminate any free DNA remaining in the sample
outside of the vesicles, samples were first treated with
2U of TURBO DNase (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s instructions in a 50μl
final reaction volume and incubated for 30min at 37 °C.
Following this, an additional 2 U of TURBO DNase
enzyme was added and incubated as before. DNase
was inactivated at 75 °C for 15min. Genomic DNA
controls were used to confirm the effectiveness of the
DNase treatment.

To lyse the vesicles, samples were incubated in GES
lysis buffer (Renelli et al., 2004; 50mM guanidinium
thiocyanate, 1mM EDTA and 0.005% (w/v) sarkosyl;
final concentration) at 37 °C for 30min. DNA content of
lysed samples was measured by the Quant-iT PicoGreen
dsDNA assay (Invitrogen), with fluorescence assayed on
a Synergy2 plate reader (BioTek, Winooski, VT, USA).
For determining fragment length distribution, the DNA
was further purified using AMPureXP beads (Beckman
Coulter) at a 2× ratio (per the manufacturer’s instruc-
tions) and measured with the Bioanalyzer High Sensi-
tivity DNA assay (Agilent, Santa Clara, CA, USA). Peaks
located between the two Bioanalyzer internal standards
(35 bp and 10 kb) were normalized relative to the
maximum peak height in that region in order to
facilitate relative comparisons among samples.

Field samples
Natural seawater samples were obtained from coastal
environments within Tampa Bay during June and
August 2014 and from the West Florida Shelf and the
Florida Keys during a cruise on the R/V Walton Smith
on 4–6 January 2016. The samples were prepared for
viral enumeration by 0.22μm filtration using Sterivex
filters (Millipore) for cruise samples or Millex cartridge
filters (Millipore) to remove bacterial cells and all larger
organisms. Samples were divided in half to provide a
chloroform treatment and a control sample. Chloroform
treatment was conducted by mixing the filtered sea
water with an equal volume of chloroform, followed by
thorough mixing and centrifugation in a phase lock gel
tube (5 Prime, Gaithersburg, MD, USA) according to the
manufacturer’s instructions. The aqueous layer was
recovered and used for further analyses.

Enumeration of SYBR-visible particles
Epifluorescence microscopy-based particle counts
were carried out using the SYBR Gold staining
method according to standard protocols (Noble and
Fuhrman, 1998; Patel et al., 2007). In brief, the
samples were filtered onto a 25mm diameter,
0.02 μm Anodisc filter (GE Whatman) and the filter
floated on a drop of diluted (2.5× ) SYBR Gold stain
(Molecular Probes/ThermoFisher, Waltham, MA,
USA) and incubated for 9–15min in the dark.
The backs of the filters were dried via Kimwipe or
vacuum to remove excess stain. The filters were
mounted on a glass microscope slide and covered
with a coverslip with 28 μl of antifade mounting
solution (0.1% phenylenediamine in 50% PBS/50%
glycerol) and stored in the dark at −20 °C until
counted. The samples were viewed and enumerated
under blue excitation using ×1000 magnification with
either a Zeiss Axioskop2 (Carl Zeiss, Oberkochen,
Germany; cultured samples) or an Olympus BX60
microscope (Olympus, Tokyo, Japan; field samples),
both fitted with a counting grid. A minimum of 400
particles or 20 fields was counted per sample.

For flow cytometry, 1ml replicate samples of
treatments and controls were placed in labeled
cryovials, fixed with glutaraldehyde to 0.5% final
concentration, incubated at 4 °C for 10–30min, then
snap frozen in liquid nitrogen and stored at − 80 °C
until analysis by flow cytometry. For analysis the
samples were thawed and diluted in TE buffer (pH
8.0) as needed to obtain an optimal counting event
rate of 100–1000 events per second. The samples
were stained with SYBR Green I (Molecular Probes/
ThermoFisher) to a final concentration of 0.5× of the
manufacturer’s stock solution and incubated at
80 °C in a water bath for 10min using 1 μm diameter
fluorescent beads (Polysciences, Warminster, PA, USA)
as an internal standard, according to standard protocols
(Brussaard et al., 2000; Brussaard, 2004, 2009).
The samples were analyzed on a FACSCalibur flow
cytometer (Becton Dickenson, Franklin Lakes, NJ, USA)
equipped with an air-cooled laser at 488 nm and a
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standard filter setup using SYBR fluorescence as the
trigger. Data were acquired and processed with Cell
Quest Pro software (Becton Dickenson). Flow rates were
determined at both the beginning and end of each day
the machine was used, and the average value for that
day was used for calculating particles per ml. Abun-
dances were based on a minimum of three technical
replicates on each of two replicate samples.

Data analysis
All statistical analyses were conducted in either
Microsoft Excel (Microsoft, Redmond, WA, USA) or
in R V3.2.2 (R Core Team, 2015). Figures were
generated using ggplot2 (Wickham, 2009) and Ocean
Data View (Schlitzer, 2016). The Salinicola MIT1003
and Thalassospira MIT1004 genomes were sequenced
as previously described (Biller et al., 2015) and
assembled with the SPAdes assembler (Bankevich
et al., 2012; V3.5.0) using the following options: -k
21,33,55,77 -careful -only-assembler and retaining only
contigs 4500 bp. Taxonomic identities of these strains
were determined by the RDP classifier (Wang et al.,
2007), and the draft genomes have been deposited in
the NCBI database under accessions MCAP00000000
(MIT1003) and MCAO00000000 (MIT1004). The Alter-
omonas (NCBI accession JXRW01000000), Salinicola
and Thalassospira genomes were screened for gene
transfer agents (GTAs; based on homology to Rhodo-
bacter capsulatus proteins RCAP_rcc01683 and
RCAP_rcc01698) and the Pseudomonas aeruginosa
Lys endolysin (protein PA0629) using BLAST+
(Camacho et al., 2009) with an e-value cutoffo1×10−4.

Results
Vesicle-associated DNA content varies among
microbial taxa
We first examined the size distribution of DNA
associated with vesicles released from three
marine heterotrophs, Alteromonas, Salinicola and

Thalassospira. Each of these strains released DNA
fragments with a unique size distribution between
35 bp and 10 kb (Figure 1). For example, Salinicola
vesicles were associated with fragments mostly
o1000 bp, whereas DNA segments associated with
Alteromonas vesicles were notably longer. Thalas-
sospira vesicle DNA fragments were broadly dis-
tributed between the 35 bp and 10 kb range
examined, and contained fragments 410 kb as well.
The sizes of vesicle DNA from each of these three
strains exhibited a less discrete fragment size
distribution than that previously observed from
Prochlorococcus (Figure 1; Biller et al., 2014).
Attempts to determine the fragment size distribution
from E. coli have not been successful to date, for
reasons that are unclear. Although the differences in
the DNA content of vesicles produced by Prochlor-
ococcus versus heterotrophs could be partly due
to sampling effects, these data suggest that the
processes that generate the DNA fragments exported
in vesicles do not function the same in all bacteria.

Given the observed size range of vesicle-associated
DNA, we wondered how many fragments might be
packaged within each vesicle. To this end, we
measured the average amount of double-stranded
DNA present in each vesicle using standard fluoro-
metric approaches. When considered on a bulk average
basis, each individual vesicle contains on the order of
zeptograms (10−21 g) of DNA—equivalent to tens to
hundreds of basepairs of DNA (Table 1). Given that
many, if not most, of the DNA fragments observed in
these vesicle populations are typically much longer
than this (Figure 1), we conclude that DNA is not
uniformly incorporated into bacterial extracellular
vesicles. Average vesicle DNA content from these
different strains was positively correlated with vesicle
diameter (Table 1); however, given the broad distribu-
tion of vesicle sizes (Supplementary Figure S1) and
DNA fragment lengths (Figure 1), it is not yet clear if
longer fragments, or greater quantities of DNA, are
necessarily associated with larger vesicles.

Figure 1 Size distribution of DNA associated with extracellular vesicles from marine bacteria. Fragment size distribution of double-
stranded DNA extracted from extracellular vesicles of cultured isolates of Salinicola (black), Alteromonas (orange) and Thalassospira
(violet) compared with data for Prochlorococcus (green; Biller et al., 2014). Peaks for all strains at 35 bp and 10 kb are Bioanalyzer internal
standards.
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DNA is packaged heterogeneously within bacterial
extracellular vesicles
To more directly test the hypothesis that DNA is not
uniformly distributed among individual vesicles, we
measured the fraction of vesicles visible by staining
with the DNA-binding dye SYBR Gold using epifluor-
escence microscopy, and compared this number with
the total vesicle counts determined by nanoparticle
tracking analysis. Only a small fraction of vesicles
(o1%) from all of the bacterial strains tested were
visible by SYBR staining (Figure 2; Supplementary
Figure S2). As only vesicles containing a relatively
large amount of DNA (49 kb) are likely to be visible by
SYBR epifluorescence (Tomaru and Nagasaki, 2007),
any vesicles containing only short fragments would be
missed in these counts; thus although these findings
are consistent with heterogeneity in the contents of
bacterial vesicles, these values represent only a lower
bound estimate for the fraction of vesicles containing
any DNA. Together, these results support the hypoth-
esis that the DNA content of individual extracellular
vesicles is variable.

Contribution of extracellular vesicles to
epifluorescence-based viral abundance estimates
Our finding that staining and quantifying vesicles
from cultured bacteria using epifluorescence micro-
scopy protocols identical to those commonly used to
measure viral abundances in sea water resulted in
the detection of o1% of the vesicles (Figure 2)
challenges recent hypotheses that marine viral
abundance may be grossly overestimated due to the
presence of membrane vesicles (Soler et al., 2015).
Given estimates of vesicle concentrations in the
upper ocean of 105–106ml− 1 for oligotrophic and
coastal stations, respectively (Biller et al., 2014),
these measurements suggest that o1% of these
vesicles, or 103–104ml−1, might be visible when
using standard epifluorescence protocols for quanti-
fying viruses (or technically, virus-like particles). As
virus concentrations in the surface ocean are
typically on the order of 106–107ml− 1 (Parsons
et al., 2012; Wigington et al., 2016), this implies that
extracellular vesicles might represent o0.1% error

in these values. Obviously this value could easily
vary as a function of bacterial community composi-
tion and the potential for other bacterial groups to
release SYBR-visible vesicles at much greater fre-
quencies than those sampled here.

To better determine the impact of vesicles on viral
counts in the field, we measured the potential
contribution of vesicles to epifluorescence counts
in several natural seawater samples. Although physical
attributes such as size and density have been used to
physically separate vesicles from some types of viruses
present in marine samples, it is difficult to isolate
vesicles away from filamentous and other viruses (and
possibly GTAs—host-encoded viral-like particles that
contain cellular DNA) based on these traits alone
(Biller et al., 2014). To discriminate between vesicles
and viruses, we took advantage of the fact that their
lipid membranes make vesicles sensitive to disruption
with chloroform (Supplementary Figure S3; Forterre
et al., 2013). We examined seawater samples collected
from coastal sites in Florida and multiple locations in
the Gulf of Mexico (Figure 3a). Removing vesicles via
chloroform treatment had no significant impact on
epifluorescence particle counts from samples collected
at the two coastal sites at one sampling date. However,
another sample collected on a different day at one of
these locations revealed a ~7× decrease in particle
counts following chloroform treatment (Figure 3b),
suggesting temporal variability in the potential con-
tribution of SYBR-visible vesicles or lipid-containing
viruses. Epifluorescence virus-like particle counts,
with and without chloroform treatment, were also
obtained from cruise samples from the West Florida
Shelf and Florida Keys. All samples collected on this

Figure 2 Quantitative analysis of vesicles visible by epifluores-
cence microscopy. SYBR Gold-visible particle concentrations
were determined from cultures of the indicated bacteria and
compared with the total vesicle concentration determined by
nanoparticle tracking analysis. Values indicate mean± s.d. of three
biological replicates.

Table 1 Size and population average double-stranded DNA
content of vesicles from cultured bacteria

Strain dsDNA/vesicle (ng) dsDNA/
vesicle
(bp)

Mode vesicle
diameter
(nm)

E. coli 1.9 (±2.6) × 10−11 17 80 (±3)
Prochlorococcus 3.1 (±2.4) × 10−11 28 92 (±9)
Salinicola 1.6 (±2.2) × 10−10 149 126 (±9)
Alteromonas 1.9 (±2.2) × 10−10 174 117 (±11)
Thalassospira 5.1 (±3.8) × 10−10 473 126 (±7)

Abbreviation: dsDNA, double-stranded DNA.
Mean DNA length was calculated assuming an average mass of
1.08 × 10− 12 ng per bp. Values indicate the mean± s.d. from two
biological replicates.
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cruise yielded significantly lower viral counts following
chloroform treatment (Figure 3c), with the magnitude of
this effect varying between ~2× and ~8× . These
results suggest that DNA-containing bacterial vesicles
contribute, at most, less than an order-of-magnitude
error to viral counts; it also implies that the lower
bound of viral (or GTA) abundances in these samples
was 12–50% of the SYBR-visible particle count.

Although many marine phages are not affected by
chloroform, some phages such as the membrane-
containing aquatic phages in the family Corticoviridae
(that is, phage PM2) will be at least partially destroyed
by this treatment (Supplementary Figure S3; Espejo and
Canelo, 1968; Krupovic and Bamford, 2007; Poranen
et al., 2015). In fact, some early estimates have suggested
that up to 30% of tailed phages are chloroform sensitive
based on loss of infectivity (Ackermann and DuBow,
1987), yet it is unknown if this would destroy the
particle beyond recognition by epifluorescence-based
methods. In addition, many viruses infecting archaea
(for example, Pietilä et al., 2009) and eukaryotes (for
example, Martínez Martínez et al., 2015) contain lipid

membranes, suggesting that lipid-containing viruses
may be more prevalent in the marine environment than
previously thought. As chloroform treatment may
eliminate lipid-containing viruses, it is not a perfect
method for distinguishing vesicles from viruses. None-
theless, comparing SYBR counts from environmental
samples before and after chloroform treatment estab-
lishes an upper bound on the potential contribution of
vesicles to epifluorescence-based viral counts. Collec-
tively, the low frequency of epifluorescence-visible
vesicles produced by cultured isolates (Figure 2),
combined with the relatively small decrease in SYBR-
stained particles from natural marine samples upon
chloroform treatment, leads us to propose that vesicles
are not likely to have a notable impact on estimates of
viral abundance in the environment.

Discussion

The heterogeneity of vesicle contents is becoming
increasingly apparent in studies of eukaryotic

Figure 3 Bounding the potential contribution of vesicles to estimates of viral abundance in marine samples based on SYBR staining.
(a) Field sampling locations. (b) Impact of chloroform treatment on SYBR-based particle counts from three coastal sites. NS=not
statistically significant (P40.05, two-tailed t-test); the Bayboro Harbor (BBH) sample collected on 06 May 2014 exhibited a significant
difference (Po0.05, two-tailed t-test). (c) Impact of chloroform treatment on samples from the Gulf of Mexico. All samples exhibited a
statistically significant difference in particle abundance between untreated and chloroform-treated samples (Po0.05, two-tailed t-test).
Data in (b) and (c) represent the mean± s.d. of two replicates.
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exosomes, which have been shown to differ in their
morphological, proteomic and chemical composition
(Höög and Lötvall, 2015; Smith et al., 2015; Koliha
et al., 2016; Kowal et al., 2016). The results
presented here demonstrate that DNA is heteroge-
neously incorporated into bacterial vesicles, sup-
porting the notion that extracellular vesicle
populations are comprised of distinct subpopula-
tions with unique compositions (Schwechheimer
and Kuehn, 2015). Thus the distribution of contents
among bacterial vesicles needs to be considered, as
their ability to carry out a particular ecological
function may depend on the relative abundance of
vesicles containing the required components within
the population.

The mechanism through which DNA fragments are
first generated and then integrated into membrane
vesicles remains unclear. There is long-standing
evidence that DNA can be incorporated into vesicles
from the periplasm (Renelli et al., 2004), though
precisely how the DNA could move across the inner
membrane is not known. An alternate route for DNA
incorporation into vesicles comes from the observa-
tion of a subpopulation of vesicles, termed ‘outer-
inner membrane vesicles’, which contain both the
outer and inner membranes instead of just outer
membrane material (Pérez-Cruz et al., 2013). If the
cell is able to pinch off both the outer and inner
membranes to form vesicles, there would be a clear
topological route for incorporating DNA from the
cytoplasm into extracellular vesicles (Pérez-Cruz
et al., 2015). Double-stranded DNA has been found
within outer–inner membrane vesicles, which make
up only a small proportion (o1.2%) of membrane
vesicles from some Gram-negative bacteria (Pérez-
Cruz et al., 2015). Although those findings are
consistent with the heterogeneity of DNA-
containing vesicles observed here (Figure 2), we do
not know what fraction of SYBR-visible vesicles
might have been outer–inner membrane vesicles.
Another potential mechanism for incorporating DNA
into vesicles is that this occurs extracellularly
(Renelli et al., 2004). For example, P. aeruginosa
vesicles can be formed as a consequence of cell lysis,
wherein fragments of broken membranes re-anneal
into vesicles and, consequently, trap DNA and other
cytoplasmic material released by the lysed cells
(Turnbull et al., 2016). This mechanism is associated
with the activity of a phage endolysin, which is
required for vesicle formation under biofilm and
stressed conditions, though the endolysin does not
impact vesicle release during normal planktonic
growth (Turnbull et al., 2016). Although the marine
strains studied here have no obvious homolog to that
particular P. aeruginosa endolysin and were exam-
ined during normal growth conditions, it is possible
that at least some of the DNA-containing vesicles
observed here were derived from a subpopulation of
lysing cells. It will be interesting, particularly from
the perspective of improving our insight into vesicle
formation and packaging mechanisms, for future

studies to determine whether larger fragments of
DNA are specifically found in larger vesicles. Viral
capsid sizes, for example, are also positively corre-
lated with DNA content (Jover et al., 2014), but viral
and vesicle packaging mechanisms are likely to be
quite different. Much work remains to determine
the mechanism(s) by which different subpopulations
of vesicles are formed and become associated
with DNA.

The observed species-level differences in both the
size and amount of DNA fragments in vesicles have
important implications for the potential of vesicles to
act as agents of horizontal gene transfer. Although
bacteria can take up short pieces of DNA and
recombine them into their genomes (Overballe-
Petersen et al., 2013), a microbe which releases
primarily shorter fragments within vesicles may be
less likely to deliver complete genes. The disparities
in vesicle-associated DNA fragment lengths found
among strains is striking, and future studies should
investigate the mechanism by which these DNA
fragments are generated and the additional factors
that may influence this process. Such differences in
DNA fragment length distributions among microbes
also have implications for the interpretation of
metagenomic data collected from natural vesicle
populations, as the relative amount of DNA con-
tained within a vesicle population may not necessa-
rily reflect the relative number of vesicles released
from each strain. Vesicle DNA content may also vary
under different physiological conditions, as vesicles
from biofilm-associated Helicobacter pylori cells
have been found to contain more DNA than those
released by planktonic cells (Grande et al., 2015).

Although extracellular vesicles that contain larger
DNA fragments clearly can be detected using the
epifluorescence approaches that are frequently used
to enumerate viruses in the field (Forterre et al.,
2013), they are not likely to have systematically
inflated those measurements to a notable degree.
Errors in viral counts arise from a wide variety of
factors, ranging from differences in sample handling,
slide preparation equipment, method of visualiza-
tion (that is, microscopy versus flow cytometry) and
variation in counting inherent to different indivi-
duals. Thus while vesicles may contribute some
amount of error, the magnitude of this error must be
considered in the context of other error sources. In
addition to vesicles, GTAs are widespread in the
marine environment (Biers et al., 2008; McDaniel
et al., 2010; Lang et al., 2012) and may inflate viral
counts (Forterre et al., 2013). However, GTAs are
generally smaller and contain less nucleic acid than
bacteriophages (Lang and Beatty, 2010; Lang et al.,
2012) making them likely to be missed by standard
methods. In addition, RNA viruses and single-
stranded DNA viruses, which are being identified
in the oceans with increasing frequency (Culley
et al., 2006; Labonté and Suttle, 2013; Steward et al.,
2013; Hopkins et al., 2014; Rosario et al., 2015), may
not be visible by epifluorescence methods due to
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their small genome sizes (Tomaru and Nagasaki,
2007) and/or poor staining by commonly used dyes
(Holmfeldt et al., 2012); this would lead to an under-
estimation of viral abundance using standard methods.
Finally, epifluorescence enumeration methods can
also be biased through the misidentification of small
bacteria as viruses (overestimating viral abundance;
Stockner et al., 1990) or due to the removal of large
viruses (for example, Van Etten and Meints, 1999;
Fischer et al., 2010) during sample filtration or their
misclassification as bacteria (leading to an under-
estimation of viral abundance). In light of all these
factors, determinations of viral abundance (often more
appropriately referred to as counts of virus-like
particles) should be considered estimates—likely
within an order of magnitude of the actual value, but
with several layers of uncertainty.

The relationships and interactions between
viruses and vesicles constitute an interesting and
open set of questions. Vesicles may have important
effects on marine viral ecology by acting as defense
agents (cellular decoys) or through serving as
vehicles for moving DNA and other molecules
between cells, which could in turn alter host
sensitivity. The dynamics of these ecological inter-
actions will be influenced by the ratio of viruses to
vesicles in a given location, but measuring the
relative abundances of vesicles and viruses—
let alone those impacting a specific group of cells—
remains technically challenging. Vesicles and many
viruses are similarly sized, making them difficult to
physically separate using standard techniques in
biological oceanography and marine biology. In
some cases, they can also have similar buoyant
densities, further complicating efforts to separate
them. There are, however, important distinguishing
features. By negative staining and transmission
electron microscopy, phages typically have angular,
structured features whereas membrane vesicles have
a distinct spherical and nearly amorphous appear-
ance. An example of this is the tailless viral particles
observed throughout the oceans by Brum et al.
(2013), which are clearly distinguishable from
membrane vesicles (Kadurugamuwa and Beveridge,
1995; Kesty and Kuehn, 2004; Biller et al., 2014).
Interestingly, during the development and validation
of DNA staining and epifluorescence microscopy-
based counting techniques for viruses, these meth-
ods yielded counts 1–7× greater than transmission
electron microscopy counts (for example, Hara et al.,
1991; Hennes and Suttle, 1995; Proctor, 1997;
Weinbauer and Suttle, 1997). In particular, epifluor-
escence counts using SYBR dyes were an average of
1.5 × higher than those obtained through transmis-
sion electron microscopy (Noble and Fuhrman,
1998; Marie et al., 1999; Chen et al., 2001). These
differences are similar to the decreases in viral
abundance observed in this study following chloro-
form treatment, again putting the impact of mem-
brane vesicles on epifluorescence determination of
viral abundance in perspective.

Similarly, much remains to be elucidated con-
cerning the contribution of viral DNA to vesicle
metagenomes—as well as of vesicle DNA to bacterial
and viral metagenomes. Although there is almost
certainly ‘bona fide’ viral contamination in vesicle
samples from the field (Soler et al., 2015), evaluating
the magnitude of this issue is complicated by the
release of viral DNA and other mobile elements
within vesicles (Yaron et al., 2000; Renelli et al.,
2004; Soler et al., 2008; Gaudin et al., 2014), as well
as technical considerations including the potential
for preferential amplification of single-stranded DNA
phage sequences during some library preparation
protocols (Kim and Bae, 2011; Szekely and Breitbart,
2016). Likewise, vesicles and GTAs may serve as a
source of bacterial sequences in viral metagenomes
(Roux et al., 2013), but current methods cannot
definitively distinguish these contributions from true
phage auxiliary metabolic genes (Hurwitz and
U’Ren, 2016). All of the caveats and considerations
discussed here reinforce the need for further method
development to improve the ability to enumerate
viruses in field samples and to discriminate among
the many small colloidal particles of biological
origin present in the oceans.
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